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Homework 2 Solutions 
 

1.  Maxwell-Boltzman distribution 
(a) By definition <v> = 
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From tables of Gaussian integrals (or using your favorite symbolic math tool such as Maple 

or Mathematica), we find 2
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So the final result is <v> = [(8kBT)/(mπ)]1/2 ≈1.6 (kBT/m)1/2 
(b) The  “most likely” velocity is where the pdf has a maximum value with respect to all the 

independent variables.  To see this we convert to scalar form P(v)dv = (m/2πkBT)3/2 exp(-
mv2/2kBT)dv = (m/2πkBT)3/2 exp(-mv2/2kBT)v2sinθdvdθdf .   The most likely velocity is 
where ∂P/∂v = 0 = (m/2πkBT)3/2 {exp(-mv2/2kBT)2v + v2exp(-mv2/2kBT) (-mv/kBT)}.  The 
solution clearly is v = (2kBT/m)1/2.  ≈ 1.4 (kBT/m)1/2 

(c) The variance follows from the definition (∆v)2 ≡ <(v - <v>)2> = <v2 – 2v<v>+<v>2> = <v2> – 

<v>2 .   By definition <v2> dvTkmvvTkm BB ∫
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integral tables (or your favorite symbolic math tool), we find dvTkmvv B∫
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2/52/1 )/2())(8/3( mTkBπ .  So after some fortuitous cancellations, <v2> =(3kBT/m).  And thus 
<v2> -<v>2 = (kBT/m)(3 – 8/π), and vrms = [<v2> - <v>2 ]1/2  ≈ 0.67 (kBT/m)1/2  
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4π(m/2πkBT)3/2 exp(-mv2/2kBT)v2dv .  Thus dM/dv = 4π(m/2πkBT)3/2 exp(-mv2/2kBT)v2 
which is  evaluated on the attached Excel spreadsheet and plotted below.   Here we clearly 
see the most likely velocity value as the peak of the curve.  And the average value is slightly 
above the peak, consistent with the fact that the averaging process is skewed by the long 
Gaussian “tail”.  We also see that the rms deviation (often called the “standard” deviation) 
represents the range above and below the average value over which the M(v)dv is large.  The 
fact that it is relatively tight allows one to deal with the entire distribution simply by dealing 
with the most likely or average values exclusively – an approximation behind the kinetic 
theory that is so useful in the most basic form of transport theory, known as kinetic theory. 

 
2. Single particle level as Boltzman subsystem. 

(a) Starting with the Boltzman pdf, derive the mean number of particles <ni> in the single state 
of total energy (kinetic + potential) ui . 

(b) Now derive the variance or mean-square fluctuations, <(∆ni)2>. [clue: start with the Boltzman 
distribution and utilize the general result for random variables, <(∆ni)2> = <(n - <ni>)2> = 
<(ni)2> - <ni>2 ]. 

 



ECE215A/Materials206A Winter 2008 
Prof. Brown/ECE Dept/UCSB 

2 

(a) Since each Boltzmann subsystem is now a single state but with arbitrary population, the mean number 

of particles in this state is 0

0
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  (note the summation over ni, not i; this reflects 

the fact that the state itself is the subsystem – the various populations of that state constitute the different 
terms of the statistical ensemble). The denominator (inverse normalization constant) can be evaluated 

using elementary calculus as a convergent geometric series: 
0
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The numerator can be evaluated using the same type of trick as described in lecture: this time take 
advantage of the fact that  
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step follows by interchanging the order of summation and differentiation (allowable for well behaved 
functions).  So by summing the geometric series , we get for the next step 
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, the famous Planck function when ui = hν 

(b) To get the variance, we start with a fundamental result that follows from the statistical nature, 
<(∆ni)2> ≡  <(n-<ni>))2>= <(ni)2 > - 2<ni ⋅<ni>> + <ni>2 = <(ni)2 > - 2<ni>2 + <ni>2 =  <(ni)2 > - <ni>2  

where <ni> was derived in (a)  and  
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type of trick as in (a)  using the fact that 
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So the numerator above becomes (with some good algebra) 
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so <(ni)2 > - <ni>2 = 
2 2 2
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This is a remarkable result of discrete statistics: the greater the population of a state, the greater 
its variance. 
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3. Independent of its location, the electron in an singly-ionized hydrogen molecule creates an 
attractive force on both protons governed by Coulomb’s law: 
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12r̂  is the unit vector pointing from the left proton [labeled 2 in Fig. 1(a)] to the electron, 13r̂  is 
the unit vector pointing from the right proton [labeled 3 in Fig. 1(a)] to the electron, and r12 and 
r13 are the distanced between each pair.  These forces can be defined in Cartesian coordinates as 
shown in Fig. 1(a).  A necessary, but by no means sufficient, condition for a stable bond is that 
the x component of the net force between the protons and electron be attractive with respect to 
the protons.  In other words, the effect of the electron should be to draw the protons closer 
together, not further apart.  This is a necessary condition because the Coulomb force between the 
protons alone is always repulsive.  So unless the electron induces an attractive effect, there is no 
chance for a stable bond.  It is not a sufficient condition because, in principle, the induced 
attractive force must exceed the repulsive force between the protons if the bond is to be 
absolutely stable.  This sufficient condition can also be analyzed mathematically, as done below.  

Ignoring for the moment the proton-proton repulsion, the net electrostatic force induced 
by the electron on the two protons will be attractive along the x direction when 

F12,x – F13,x > 0 
Assuming the origin in Fig. 1(a) lies at the midpoint between the protons and the electron is 
located at (x,y), we have 

222
12 )( yaxr ++=  and 222

13 )( yaxr +−=  

2/122,12 ])[(
ˆ)(ˆ

yax
xaxr x ++

⋅+
=     and   2/122,13 ])[(

ˆ)(ˆ
yax
xaxr x +−

⋅−
=                                  

So the net-attractive condition becomes (after multiplying by 4πε0/e2) 
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Because of the inequality, this expression defines a region in space which can be defined very 
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Fig. 1. 
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simply along the x axis (i.e., y = 0).  Under this condition, we have 
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−
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−
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where the exponentiation is maintained in the denominator to remind us that the denominators 
should always be positive, regardless of x.  By inspection, the inequality is satisfied only for –a < 
x < a.  This makes sense physically since when the electron is located between the two protons, 
the induced net attraction will always be larger than the proton-to-proton repulsion.  An analytic 
solution to Eqn (1) is tedious, but a numerical solution is easy by a number of different methods.  
Shown in Fig. 1(b) (solid blue lines) is the solution for equality in Fig. (1) obtained with a simple 
MATLAB function (hydrogen.m on course Website) assuming a = 1.  Each solution locus is a 
hyperbola that intersects the two protons represented by plus signs.  Clearly, the inequality is 
satisfied at all (x,y) values between these two loci. 

 Eqn (1) is just a necessary condition because the Coulomb force between the protons is 
always repulsive.  So unless the electron induces an attractive effect, there is no chance for a 
stable covalent bond.  To be a sufficient condition, the induced attractive force must exceed the 
repulsive force between the protons.  This can also be analyzed mathematically by adding to Eqn 
(1) the corresponding x component of the repulsive force.   
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The numerical solution corresponding to this condition is also plotted in Fig. 1(b).  The solid red 
line denotes equality in Eqn. 1(b), and the shaded region denotes where the inequality is 
satisfied.   As might be expected intuitively, the additional constraint in Eqn. (2) limits the 
possible electron position a much smaller area (shown by the red cross hatch) than satisfies Eqn. 
(1).   This smaller region “between the protons” is where bonding of ionized hydrogen molecule 
can occur.   

 
 

4. Given the following form of the compliance matrix,  
   0.7664   -0.2130   -0.2130         0           0              0 
 -0.2130     0.7664   -0.2130         0           0              0 
 -0.2130    -0.2130    0.7664         0           0              0 

               0             0               0         1.2563       0              0 
                 0             0               0              0       1.2563         0 
                 0             0               0              0           0           1.2563 
we expect the inverse (stiffness) matrix to have exactly the same form; i.e., all nonzero elements 

in the upper-left quadrant; all zeroes in the lower left and upper right quadrants; and nonzero 
elements only along the diagonal of the lower-right quadrant. 

(b) substitution of this matrix into Matlab and using the inv.m function (matrix inversion) leads to 
the result. 

        1.6600    0.6390    0.6390         0           0           0 
         0.6390    1.6600    0.6390         0           0           0 
         0.6390    0.6390    1.6600         0           0           0 
                0             0              0         0.7960      0           0 
                 0             0              0             0        0.7960     0 
                 0             0              0             0           0         0.7960 
Given the units of 1011 N/m2 we have C11 =  166 GPa, C12 = 63.9 GPa, and  C44 =  79.6 GPa  - the 

three distinct coefficient for crystalline silicon ! 
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5. (Young's modulus and Poisson's ratio).  An isotropic solid is subject to tension along the x axis  
i. Find the stiffness coefficients in terms of Young’s modulus and Poisson’s ratio  

In the notes there is general form of the compliance matrix for an isotropic solid: 
1/ / / 0 0 0

/ 1/ / 0 0 0
/ / 1/ 0 0 0

0 0 0 2(1 ) / 0 0
0 0 0 0 2(1 ) / 0
0 0 0 0 0 2(1 ) /
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We expect the stiffness matrix to have the form: 
1 111 12 12

2 212 11 12

3 312 12 11

4 444

5 544

6 644

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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By definition, the stiffness matrix is the inverse of the compliance matrix.  Stated 
mathematically, this means that if X is the matrix product of the two matrices, then 

,MN MK KN M N
K

X C S δ= =∑  where δM,N is the Kronecker delta function (= 1 if M = N; = 0 if M 

≠ N).  It is easy to show X11 = X22 = X 33 = 1 = (C11 – 2C12σ)/Y (*)_, and X12 = X13 = X21 = 
X23 = X31 = X32 = 0 = [C12 - σ(C11+C12)]/Y (**) . Multiplying (*) by σ and adding to (**) (to 
eliminate dependence on C11) , we get σY = -2C12 σ2 + C12(1 - σ), or  

C12 = σY/(1 - σ - 2σ2) . 
        Substitution of this back into (*) yields C11 = Y + 2σ2Y/(1 - σ - 2σ2), or 

C11 = Y(1 - σ)/ /(1 - σ - 2σ2)   
To get C22, we note X44 = X55 = X66 = 1 = C44 2(1+σ)/Y, or  
     C44 = Y/[2(1 + σ)] 

ii. There is an alternate form of the stiffness matrix for an isotropic solid in terms of 
Lame coefficients 
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0 0 0 0 0
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These can be related directly to the Young’s modulus and Poisson’s ratio through the 
stiffness coefficients.  By inspection, we have 

λL = C12 = σY/(1 - σ - 2σ2) 
µL = Y/[2(1 + σ)] 

For self consistency we check the sum 2µL + λL = Y(1 - σ)/ /(1 - σ - 2σ2)  = C11 , as expected.    
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6. (a) For  purified aluminum Y = 73 GPa and σ = 0.33 ⇒ λL = 53.3 GPa and µL = 27.4 GPa.   

For amorphous SiO2 , Y  = 85 GPa, and σ = 0.25 ⇒  λL = 34.0 GPa and µL = 34.0 GPa (equal !) 
(b) From the Lame coefficients for aluminum, C12 = λL = 53 GPa, C11  =  2µL + λL = 108 GPa 
and C44 = µL = 27 GPa.  From the Lame coefficients for amorphous SiO2,  
C12  = 34 GPa, C11  = 102 GPa and C44 = 34 GPa 
 

7.  (Speed of Sound in an Isotropic Solid) 
i. along the   x, y, or z directions in an isotropic solid, we can use the same formulation as for a 

cubic solid and solve the component elastic wave equation.  With a longitudional wave ∆rx = 
∆r0 exp[j(kx - ωt)] along the x axis, for example.  The solution leads to the dispersion relation 
ω = k c = k (C11/ρ)1/2 = k [(2µL + λL)/ρ]1/2  were c is the speed of longitudinal sound  in terms 
of the stiffness and Lame coefficients. 

ii. For the shear wave, the solutions are ry = ∆r0 exp[j(kx - ωt)] or  
  rz = ∆r0 exp[j(kx - ωt)] and find ω = k c = k (C44/ρ)1/2. 

iii. Along the x + y + z axis (cube diagonal in Cartesian coordinates), we use the clue that 
u r r z rx y zυ= ∆ = = ∆ = = ∆  and the elastic wave equation becomes 

( )
2 2 2 2 2 2
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x y x zt x y z
ρ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟= + + + + +⎜ ⎟⎜ ⎟ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ⎝ ⎠⎝ ⎠
  

(only dependent variable is u !).  We seek the solution 
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1 2
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⎡ ⎤⎛ ⎞= = + +⎢ ⎥⎜ ⎟
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1 2
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sk
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⎝ ⎠⎣ ⎦

 

iv.To get the velocities we first need the densities: a little searching reveals ρ = 2700 KG/m3 (Al) 
and ρ =2600 KG/m3 (SiO2 ), so that for compressional wave along x, y, or z: 

c = k(C11/ρ)1/2 =  [(2µL + λL)/ρ]1/2  = 6325 m/s for aluminum and 6263 m/s for SiO2 
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For the shear wave along x, y, or z: we get c =  k(C44/ρ)1/2 =  [µL/ρ]1/2  = 3162 m/s  for Al and 

3616 m/s for SiO2   For the compressional wave along x + y + z direction, we get 

1 21 2 21 2 4 1 2 411 12 44
3 3 3 3 3 3

C C C L L LL
sk

µω λ µλυ
ρ ρ

⎡ ⎤⎡ ⎤ ⎛ ⎞+⎛ ⎞ ⎢ ⎥= = + + = + +⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦
  

1 22 L Lµ λ
ρ

⎡ ⎤+= ⎢ ⎥
⎣ ⎦

  

So the longitudinal wave is the same along the x + y + z as along x, y, or z.  This can be 
generalized to a compressional (or shear) wave velocity independent of orientation, just what one 
expects in an “isotropic” solid ! 
 

8. If the solid has a cubic symmetry in an x, y, z cartesian system and is subjected to tension along the x 
axis: 

(a) Young’s modulus: 

It is always true 

11 12 13

21 22 23

31 32 33
. .
. .
. .

...xx xx
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zz zz

e S S S P
e S S S P

S S Se P
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, but under unixial stress only one PM is 

nonzero, let’s let it be Pxx .  So we have ( )1111e S P S compliance coefficientxx xx= →   and by 

definition 1

11

PxxY
e Sxx

−
≡ = .  Unfortunately, the relationship between the compliance and 

stiffness matrix is not as simple as for the isotropic solid.  But from inversion formulae, we 
can solve for 11S  by algebra in terms of elastic stiffness coefficient C. 

1 1 2 1
, 2 311 12 11 12 112 211 12 11 12 11 12 11 12

S S S S S
C C C C C C C C

− = + = ⇒ = +
− + − +

 

or ( )
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S Y
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Poisson’s ratio yy zz
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e eor
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σ ≡ :  But , 021e S P all other Pyy xx M= =    .  So 21 12
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e S Syy
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And from Kittel, Eqn. (51) : ( )1
11 12 11 12

S S i
C C

− =
−      and ( )1

211 12 211 12
S S ii

C C
+ =

+   

We then divide (ii) by (i) to get 

1 2 1 212 11 11 12
1 1 212 12 11 12
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S S C C

σ
σ

+ − −
= =

− + +  .   Let’s call this quantity α  
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 So, 1 − 2σ = α(1+σ) ; 2σ + ασ = 1 - α ⇒ σ = (1−α)/(α+2)  

So we get finally, 

11 121 32 12 1211 12
3 311 12 11 12 11 122211 12

C C
C CC C

C C C C C C
C C

σ

−−
+

= = =− + ++
+

 

b) We evaluate Young’s modulus for Si and NaCl (see Table 12 of Kittel).  For silicon 

 11 112 21.66 10 , 0.639 1011 12C N m C N m= × = × , so 
2 22 3.000 1111 11 12 12 210

2.29911 12
C C C C

Y N mSi C C
+ −

= ≅ ×
+

 

 and σ = 0.278.    For NaCl, 11 112 20.487 10 , 0.124 1011 12C N m C N m= × = × , so 

 0.267 11 112 210 0.437 10
0.611

Y N m N mNaCl = × = ×  and σ = 0.203. 

c) We can now evaluate the velocity of a longitudinal acoustic wave along the x direction and along 
the x + y + z directions for cubic Si and NaCl.  

 
 For silicon: 

C11 = 1.66x1011 N/m2, C12=0.639x1011 N/m2, C44=0.796x1011 N/m2, and  

ρ = 2.33x103 KG/m3 (from CRC handbook of Chemistry and Physics) 

 So, 
1 2

1 111.66 10
2,330sυ

⎡ ⎤
= ×⎢ ⎥

⎣ ⎦
= 8440 m/s along x, y, or z 

  ( )
1 2

1 110.553 0.426 1.061 10
2,330sυ

⎡ ⎤
= + + ×⎢ ⎥

⎣ ⎦
= 9360 m/s along x+y+z 

 So there is now anisotropy in the compressional wave speed ! 
 

For NaCl: 

 C11 = 0.487x1011 N/m2, C12=0.124x1011 N/m2, C44=0.126x1011 N/m2, and   

   ρ = 2.16x103 KG/m3 (from CRC handbook of Chemistry and Physics) 

So,  
1 2

1 110.487 10
2,160sυ

⎡ ⎤
= ×⎢ ⎥

⎣ ⎦
 = 4748 m/s along x, y, or z 

 ( )
1 21 110.162 0.083 0.168 10

2160sυ ⎡ ⎤= + + ×⎢ ⎥⎣ ⎦
 = 4370 m/s along x+y+z 

Again, the compressional wave is anisotropic.  But in contrast to silicon, it moves a bit slower 
along x + y + z than it does along x, y, or z. 


