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4).  Acoustical phonons in a two-dim lattice 

(a) Excluding zero point term, and assuming the two acoustic waves have the same velocity, 
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where we have k velocity of soundω υ= → and Dω  is defined by  

( )
2

2 20 0 2 4
D D D

C
AAN D d d

ω ω ωωω ω ω
πυ πυ

= = =∫ ∫ .  Thus,
2

2 0 1
D

kT

A dU
e

ω

ω

ω ω
πυ

=
−∫ . 

Define 
( )3 2

2 2 0
,

1
Dx

D
Dx

A kT x dxx kT U x
e kT

ωω
πυ

= ⇒ = ≡
−∫ . 

(b) In the limit of low temperature, D Dx kTω≡ →∞ .  And using the clue 
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(c) In the limit high temperature 
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So,  
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in two dim in (a), we have 
2

2 4 2C
D C B

N U N k T
A

π υω = ⇒ =  and 2v C B

d U
C N k

dT
≈ =  (no surprise; 

this is just 2/3 of Dulong-Petit law in 3 dim). 

 
5).  Phonon propagation in quasi-two-dimensional crystal 

 
(a) Phonon energy is found by assuming only phonons in the quasi-two-dim plane are important.  
Phonons propagating in vertical direction have a much larger ω  vs. k so are not significantly populated.  
Furthermore, phonons propagating in the plane with transverse atomic motion directed normal to the 

plane are not significantly populated.  Thus, each plane of solid contributes 
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In the limit of low temperature, this becomes  
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and for the layered structure, 
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,  t →  sample thickness and 
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planes along vertical direction.  So, 
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V → sample volume for a = 3 Ang, v = 5000 m/s, V = 1 cm3 and T = 77 K.    We get 
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(a) at high temperatures 2 C Bplane
U N k T=  where NC is the number of primitive cells in the 2-D plane.  

For a simple hexagonal lattice we know that the primitive cell area 23
2cellA = a  where a is the lattice 

constant (see Kittel Chapter 2, Problem 2). 
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6).  A 3-dim lattice with four atoms per primitive cell  
 
(a) The number of acoustical lattice waves is 3.  The number of optical lattice waves is 9 . Of all the optical waves, 3 

are longitudinal and 6 are transverse. 
(b) From Eqn (14) of Notes 8, the total energy of acoustical phonons according to the Debye model is 
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speed of sound for the pth wave type (i.e., polarization).  In the limit of low temperature, xD = TD/T gets very 
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 large so we can approximate 
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(c) The Debye frequency is given by 
2 3

,3
,

6 s p C
D p

v N
V

π
ω =  where NC/V is the inverse volume of a primitive cell.  

Substitution of the sample parameters leads to ωD = 6.3x1013 s-1.   Application of the relation 
3 3

,( / )B D D pk T ω= then yields TD = 479 K.   
(d) At 77 K we have T < TD  so the low-temperature expression in (b) should be a good approximation, and the 

sum over polarizations p leads to a factor of 3 since  all acoustic waves are assume to have the same speed of 

sound, 5000 m/s.  This leads to the result 
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(e) The classical (Dulong-Petit) heat capacity is given by 3NckB, and the specific heat capacity by 3(NC/V)kB  = 
1.38x106 J/K – 3 times larger than the 77-K value. 

 




