ECE215A Winter Quarter 2008
Solutions to HW #4, part 2

4). Acoustical phonons in a two-dim lattice
(a) Excluding zero point term, and assuming the two acoustic waves have the same velocity,
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in two dim in (a), we have @)’ = % = <U> =2N_ k,T and C, = a<lT>

this is just 2/3 of Dulong-Petit law in 3 dim).

=2N_k, (no surprise;

5). Phonon propagation in quasi-two-dimensional crystal

(a) Phonon energy is found by assuming only phonons in the quasi-two-dim plane are important.
Phonons propagating in vertical direction have a much larger @ vs. k so are not significantly populated.
Furthermore, phonons propagating in the plane with transverse atomic motion directed normal to the

op ho*dw

A
plane are not significantly populated. Thus, each plane of solid contributes <u>plm =— I

o A |

In the limit of low temperature, this becomes
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, t—> sample thickness and is the number of

and for the layered structure, <u>mh .= <u>phme % > 43
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planes along vertical direction. So,
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V — sample volume for a=3 Ang, v=>5000m/s, V=1cm’and T=77 K. We get
<U>solid = 4'58X10+6 ’ V[J] = 458J . And
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(a) at high temperatures <U >

slane = 2N k,T where N¢ is the number of primitive cells in the 2-D plane.

For a simple hexagonal lattice we know that the primitive cell area A

Ca

3 : .
" =—~"a’ where ais the lattice
2

constant (see Kittel Chapter 2, Problem 2).

3

. . . . a
cell area =2 -area of equilateral triangle, side a; triangle area =—-acos 60’ = —

«— 8

SO’ N = i = 2—142 and <U>solid

Acell \/ga

So, (U) . =0.49-T[J].
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6). A 3-dim lattice with four atoms per primitive cell
(a) The number of acoustical lattice waves is 3. The number of optical lattice waves is 9 . Of all the optical waves, 3

are longitudinal and 6 are transverse.
(b) From Eqn (14) of Notes 8, the total energy of acoustical phonons according to the Debye model is

Soony (k,TY Y Pde Panp 3
<Um;> = Z 3 ( £ ) .[ — = Z3NCkBT kT I X d subject to the constraint
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. 67, N, . . . _
w,, = ‘T”’ where N is the number of unit cells, V is the volume of the crystal sample, and v, is the

speed of sound for the pth wave type (i.e., polarization). In the limit of low temperature, xp = Tp/T gets very
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large so we can approximate j *XAX T And we get <U,, >= Z%NCkBT (:B;Tj . The heat
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S.P where N¢/V is the inverse volume of a primitive cell.

g ’
capacity is Cy = d<U;,>/dT = = Z%N ks ( il ]

p=l
(c) The Debye frequency is given by a)Dﬂp3 =

Substitution of the sample parameters leads to wp = 6.3x10" s, Application of the relation
(k,T, /hy = a)D’p3 then yields Tp =479 K.

(d) At77 K we have T <Tp so the low-temperature expression in (b) should be a good approximation, and the
sum over polarizations p leads to a factor of 3 since all acoustic waves are assume to have the same speed of

4 3
sound, 5000 m/s. This leads to the result CV' = % ~ 12—7[&-@ (1] =4.5x10° J/K.
D

(e) The classical (Dulong-Petit) heat capacity is given by 3N kg, and the specific heat capacity by 3(N¢/V)kg =

1.38x10° J/K — 3 times larger than the 77-K value.





