4). Acoustical phonons in a two-dim lattice
(a) Excluding zero point term, and assuming the two acoustic waves have the same velocity,

$$
\langle U\rangle=2 \int_{0}^{\omega_{D}}<n_{k}>\hbar \omega_{k} D(\omega)=2 \int_{0}^{\omega_{D}} \frac{\hbar \omega_{k} D(\omega) d \omega}{e^{\hbar \omega / k T}-1}
$$

2 polarizations, one longitudinal, one transverse
For each polarization $D(\omega)=\frac{d N(k)}{d k} \frac{d k}{d \omega} d \omega=\frac{d}{d k}\left[\left(\frac{L}{2 \pi}\right)^{2} \pi k^{2}\right] \frac{d \omega}{v}=\frac{A}{2 \pi} \frac{\omega}{v^{2}} d \omega$
where we have $\omega=k v \rightarrow$ velocity of sound and ω_{D} is defined by

$$
\begin{aligned}
& N_{C}=\int_{0}^{\omega_{D}} D(\omega) d \omega=\int_{0}^{\omega_{D}} \frac{A \omega}{2 \pi v^{2}} d \omega=\frac{A \omega_{D}{ }^{2}}{4 \pi v^{2}} . \text { Thus, }\langle U\rangle=\frac{A}{\pi v^{2}} \int_{0}^{\omega_{D}} \frac{\hbar \omega^{2} d \omega}{e^{\hbar \omega / k T}-1} . \\
& \text { Define } x=\hbar \omega / k T \Rightarrow\langle U\rangle=\frac{A(k T)^{3}}{\pi v^{2} \hbar^{2}} \int_{0}^{x_{D}} \frac{x^{2} d x}{e^{x}-1}, x_{D} \equiv \frac{\hbar \omega_{D}}{k T} .
\end{aligned}
$$

(b) In the limit of low temperature, $x_{D} \equiv \hbar \omega_{D} / k T \rightarrow \infty$. And using the clue $\int_{0}^{\infty} \frac{x^{2} d x}{e^{x}-1} \approx 2.40$, we

$$
\begin{array}{r}
\text { find }\langle U\rangle \cong \frac{(2.40) A\left(k_{B} T\right)^{3}}{\pi v^{2} \hbar^{2}}=\frac{(2.40)\left(4 N_{C}\right)\left(k_{B} T\right)^{3}}{\omega_{D}{ }^{2} \hbar^{2}}=\frac{9.6 N_{C}\left(k_{B} T\right)^{3}}{\omega_{D}{ }^{2} \hbar^{2}} \\
C_{v} \approx \frac{d\langle U\rangle}{d T}=\frac{7.20 \cdot A \cdot k_{B}{ }^{3} T^{2}}{\pi v^{2} \hbar^{2}}
\end{array}
$$

(c) In the limit high temperature $\frac{1}{e^{x}-1} \approx \frac{1}{x}$

So, $\langle U\rangle \approx \frac{A\left(k_{B} T\right)^{3}}{\pi v^{2} \hbar^{2}} \int_{0}^{x_{D}} x d x=\frac{A\left(k_{B} T\right)^{3}}{\pi v^{2} \hbar^{2}} \frac{x_{D}{ }^{2}}{2}=\frac{A\left(k_{B} T\right) \omega_{D}{ }^{2}}{2 \pi v^{2}}$. But from definition of ω_{D}
in two dim in (a), we have $\omega_{D}^{2}=\frac{4 \pi N_{C} v^{2}}{A} \Rightarrow\langle U\rangle=2 N_{C} k_{B} T$ and $C_{v} \approx \frac{d\langle U\rangle}{d T}=2 N_{C} k_{B}$ (no surprise; this is just $2 / 3$ of Dulong-Petit law in 3 dim).
5). Phonon propagation in quasi-two-dimensional crystal
(a) Phonon energy is found by assuming only phonons in the quasi-two-dim plane are important.

Phonons propagating in vertical direction have a much larger ω vs. k so are not significantly populated. Furthermore, phonons propagating in the plane with transverse atomic motion directed normal to the plane are not significantly populated. Thus, each plane of solid contributes $\langle u\rangle_{\text {plane }}=\frac{A}{\pi v^{2}} \int_{0}^{\omega_{D}} \frac{\hbar \omega^{2} d \omega}{e^{\hbar \omega / k T}-1}$. In the limit of low temperature, this becomes

ECE215A Winter Quarter 2008
Solutions to HW \#4, part 2

$$
\langle u\rangle_{\text {plane }}=\frac{(2.40) A\left(k_{B} T\right)^{3}}{\pi v^{2} \hbar^{2}}
$$

and for the layered structure, $\langle u\rangle_{\text {solid }}=\langle u\rangle_{\text {plane }} \frac{t}{2.4 \mathrm{a}}, t \rightarrow$ sample thickness and $\frac{t}{2.4 \mathrm{a}}$ is the number of planes along vertical direction. So,

$$
\langle u\rangle_{\text {solid }}=\frac{2.4 A t\left(k_{B} T\right)^{3}}{2.4 \mathrm{a} \pi v^{2} \hbar^{2}}=\frac{V\left(k_{B} T\right)^{3}}{\mathrm{a} \pi v^{2} \hbar^{2}} .
$$

$V \rightarrow$ sample volume for $\mathrm{a}=3$ Ang, $\mathrm{v}=5000 \mathrm{~m} / \mathrm{s}, \mathrm{V}=1 \mathrm{~cm}^{3}$ and $\mathrm{T}=77 \mathrm{~K}$. We get $\langle U\rangle_{\text {solid }}=4.58 \times 10^{+6} \cdot V[J]=4.58 \mathrm{~J}$. And

$$
C_{v} \approx \frac{d\langle u\rangle_{\text {solid }}}{d T}=\frac{3 V k_{B}^{3} T^{2}}{\mathrm{a} \pi v^{2} \hbar^{2}}=1.78 \times 10^{5} \cdot V[J / k]=0.178 J / k
$$

(a) at high temperatures $\langle U\rangle_{\text {plane }}=2 N_{C} k_{B} T$ where N_{C} is the number of primitive cells in the 2-D plane. For a simple hexagonal lattice we know that the primitive cell area $A_{\text {cell }}=\frac{\sqrt{3}}{2} \mathrm{a}^{2}$ where a is the lattice constant (see Kittel Chapter 2, Problem 2).
cell area $=2 \cdot$ area of equilateral triangle, side a; triangle area $=\frac{a}{2} \cdot \operatorname{a} \cos 60^{\circ}=\frac{\sqrt{3}}{4}$

So, $\quad N=\frac{A}{A_{\text {cell }}}=\frac{2 A}{\sqrt{3} \mathrm{a}^{2}}$ and $\langle U\rangle_{\text {solid }}=\frac{4 A \cdot t \cdot k_{B} T}{\sqrt{3} \mathrm{a}^{2}(2.4 \mathrm{a})}=\frac{0.96 \cdot V_{C} k_{B} T}{\mathrm{a}^{3}}$
So, $\langle U\rangle_{\text {solid }}=0.49 \cdot T[J]$.

$$
C_{v} \cong \frac{d\langle U\rangle}{d T}=\frac{0.96 \cdot V \cdot k_{B}}{\mathrm{a}^{3}}=0.49\left[J-k^{-1}\right]
$$

6). A 3-dim lattice with four atoms per primitive cell
(a) The number of acoustical lattice waves is 3 . The number of optical lattice waves is 9 . Of all the optical waves, 3 are longitudinal and 6 are transverse.
(b) From Eqn (14) of Notes 8, the total energy of acoustical phonons according to the Debye model is $\left\langle U_{\text {tot }}\right\rangle=\sum_{p=1}^{3} \frac{\hbar V}{2 \pi^{2} v_{s, p}^{3}}\left(\frac{k_{B} T}{\hbar}\right)^{4} \int_{0}^{x_{D, p}} \frac{x^{3} d x}{e^{x}-1}=\sum_{p=1}^{3} 3 N_{C} k_{B} T\left(\frac{k_{B} T}{\hbar \omega_{D}}\right)^{3} \int_{0}^{x_{D . p}} \frac{x^{3} d x}{e^{x}-1}$ subject to the constraint $\omega_{D, p}{ }^{3}=\frac{6 \pi^{2} v_{s, p}{ }^{3} N_{C}}{V}$ where N_{C} is the number of unit cells, V is the volume of the crystal sample, and $\mathrm{v}_{\mathrm{s}, \mathrm{p}}$ is the speed of sound for the pth wave type (i.e., polarization). In the limit of low temperature, $\mathrm{x}_{\mathrm{D}}=\mathrm{T}_{\mathrm{D}} / \mathrm{T}$ gets very
large so we can approximate $\int_{0}^{\infty} \frac{x^{3} d x}{e^{x}-1}=\frac{\pi^{4}}{15}$. And we get $\left\langle U_{\text {tot }}>=\sum_{p=1}^{3} \frac{\pi^{4}}{5} N_{C} k_{B} T\left(\frac{k_{B} T}{\hbar \omega_{D}}\right)^{3}\right.$. The heat
capacity is $\mathrm{C}_{\mathrm{V}} \approx \mathrm{d}<\mathrm{U}_{\text {top }}>/ \mathrm{dT}==\sum_{p=1}^{3} \frac{4 \pi^{4}}{5} N_{C} k_{B}\left(\frac{k_{B} T}{\hbar \omega_{D}}\right)^{3}$
(c) The Debye frequency is given by $\omega_{D, p}{ }^{3}=\frac{6 \pi^{2} v_{s, p}{ }^{3} N_{C}}{V}$ where $\mathrm{N}_{C} / \mathrm{V}$ is the inverse volume of a primitive cell. Substitution of the sample parameters leads to $\omega_{\mathrm{D}}=6.3 \times 10^{13} \mathrm{~s}^{-1}$. Application of the relation $\left(k_{B} T_{D} / \hbar\right)^{3}=\omega_{D, p}{ }^{3}$ then yields $\mathrm{T}_{\mathrm{D}}=479 \mathrm{~K}$.
(d) At 77 K we have $\mathrm{T}<\mathrm{T}_{\mathrm{D}}$ so the low-temperature expression in (b) should be a good approximation, and the sum over polarizations p leads to a factor of 3 since all acoustic waves are assume to have the same speed of sound, $5000 \mathrm{~m} / \mathrm{s}$. This leads to the result $C_{V}{ }^{\prime} \equiv \frac{C_{V}}{V} \approx \frac{12 \pi^{4}}{5} \frac{N_{C}}{V} \cdot k_{B}\left(\frac{T}{T_{D}}\right)^{3}=4.5 \times 10^{5} \mathrm{~J} / \mathrm{K}$.
(e) The classical (Dulong-Petit) heat capacity is given by $3 \mathrm{~N}_{\mathrm{c}} \mathrm{k}_{\mathrm{B}}$, and the specific heat capacity by $3\left(\mathrm{~N}_{\mathrm{C}} / \mathrm{V}\right) \mathrm{k}_{\mathrm{B}}=$ $1.38 \times 10^{6} \mathrm{~J} / \mathrm{K}-3$ times larger than the $77-\mathrm{K}$ value.

