Homework 4 Solutions (first four problems only, for Quiz\#1)

(1) Energy of lattice wave
a) Monotomic linear lattice, mass m , spacing a , nearest neighbor interaction (spring constant) C. Consider longitudinal wave: $\Delta r_{s} \equiv u_{s}=u \cos (\omega t-s k a)$. The total energy of the wave is the sum over all atoms of the energy of each atom. From mechanics, we know that the instantaneous energy of a harmonic oscillator has a kinetic energy term and a potential energy term. The potential term depends only on the force constant and the displacement of the oscillator from equilibrium. Thus the linear lattice can be repeated as a series of springs with masses (atoms) attached.

The potential energy associated with the sth spring is

$$
P E_{S} \rightarrow \frac{1}{2} C\left(u_{S+1}-u_{S}\right)^{2}=\frac{1}{2} C\left(u_{S}-u_{S+1}\right)^{2}
$$

The kinetic energy associated with the sth mass is

$$
K E_{S} \rightarrow \frac{1}{2} M v_{S}^{2}=\frac{1}{2} M\left(\frac{d u_{S}}{d t}\right)^{2}
$$

By summing over all atoms we get the total energy:

$$
U(t)=\frac{1}{2} M \sum_{s}\left(\frac{d u_{S}}{d t}\right)^{2}+\frac{1}{2} C \sum_{s}\left(u_{S}-u_{S+1}\right)^{2} \quad \text { (instantaneous) }
$$

b) For longitudinal wave $u_{s}=u \cos (\omega t-s k a)$, we have $\frac{d u_{S}}{d t}=-\omega u \sin (\omega t-s k a)$ and

$$
U(t)=\sum_{S}\left\{\frac{1}{2} M \omega^{2} u^{2} \sin ^{2}(\omega t-s k a)+\frac{1}{2} C u^{2}[\cos (\omega t-s k a)-\cos (\omega t-s k a-k a)]^{2}\right\}
$$

The last term has the form $[\cos (\alpha-\beta)-\cos \alpha]^{2}$ with $\alpha=\omega t-s k a, \beta=k a$. So we can use the trigonometric identity $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$ to write

$$
U(t)=\sum_{S}\left[\frac{1}{2} M \omega^{2} u^{2} \sin ^{2} \alpha+\frac{1}{2} C u^{2}(\cos \alpha(\cos \beta-1)+\sin \alpha \sin \beta)\right]^{2}
$$

$$
=\sum_{s}\left[\frac{1}{2} M \omega^{2} u^{2}\right] \sin ^{2} \alpha+\frac{1}{2} C u^{2}\left(\cos ^{2} \alpha(\cos \beta-1)^{2}+2 \cos \alpha(\cos \beta-1) \sin \alpha \sin \beta+\sin ^{2} \alpha \sin ^{2} \beta\right)
$$

To get the average, we integrate over the period of wave, τ

$$
\begin{gathered}
\bar{U}=\int_{o}^{\tau} U(t) d t \quad \tau=\frac{2 \pi}{\omega}=\frac{1}{f} \\
\int_{o}^{\tau} \sin ^{2} \alpha d t=\frac{\tau}{2} ; \int_{2}^{\tau} \cos ^{2} \alpha d t=\frac{\tau}{2} ; \int_{o}^{\tau} 2 \sin \alpha \cos \alpha d t=\int_{o}^{\tau} \sin 2 \alpha d t=0
\end{gathered}
$$

So,

$$
\begin{aligned}
& \bar{U}=\frac{1}{2} M \omega^{2} u^{2} \frac{\tau / 2}{\tau}+\frac{1}{2} C u^{2}\left[\frac{\tau / 2}{\tau}(\cos \beta-1)^{2}+\frac{\tau / 2}{\tau} \sin ^{2} \beta\right] \\
& \bar{U}=\frac{1}{4} M \omega^{2} u^{2}+\frac{1}{4} C u^{2}\left[\cos ^{2} \beta-2 \cos \beta+1+\sin ^{2} \beta\right]=\frac{1}{4} M \omega^{2} u^{2}+\frac{1}{2} C u^{2}[1-\cos \beta]
\end{aligned}
$$

For linear monatomic lattice we have $\omega^{2}=\frac{2 C}{M}(1-\cos \beta)$. So finally

$$
\bar{U}=\frac{1}{4} M \omega^{2} u^{2}+\frac{1}{4} M \omega^{2} u^{2}=\frac{1}{2} M \omega^{2} u^{2}
$$

(2) Continuum wave equation

For nearest neighbor-interaction, the force on a given atom (labeled by s) is given by $F=C\left(\Delta r_{S+1}-\Delta r_{S}\right)-C\left(\Delta r_{S}-\Delta r_{S-1}\right)$ where we also assume spring constants are equal to C. For long wavelength lattice waves, we know $\Delta \mathrm{r}_{\mathrm{S}+1}$ will nearly in phase and nearly equal amplitude to $\Delta \mathrm{r}_{\mathrm{S}}$. Also, $\Delta \mathrm{r}_{\mathrm{S}-1}$ will be nearly in phase and equal amplitude to $\Delta \mathrm{r}_{\mathrm{s}}$. So we can Taylor expand Δr_{S+1} and Δr_{S-1}, thinking of each as a function of the atom average position r. Thus we can write

$$
\Delta r_{s+1} \equiv \Delta r\left(r_{s+1}\right) ; \Delta r_{s} \equiv \Delta r\left(r_{S}\right) ; \Delta r_{s-1} \equiv \Delta r\left(r_{S-1}\right)
$$

And by Taylor expansion (to $2^{\text {nd }}$ order)

$$
\Delta r_{s+1} \equiv \Delta r\left(r_{s+1}\right)=\Delta r\left(r_{S}\right)+\left.\frac{d \Delta r}{d r}\right|_{r=r_{S}}\left(r_{s+1}-r_{S}\right)+\left.\frac{1}{2} \frac{d^{2} \Delta r}{d r^{2}}\right|_{r=r_{S}}\left(r_{s+1}-r_{S}\right)^{2}
$$

But for uniform lattice constant $d, r_{S+1}-r_{S}=a$. And for lattice oriented along x axis, $r \rightarrow x$ (without loss of generality). Thus,

$$
\Delta r_{s+1}=\Delta r_{s}+\left.\frac{d \Delta r}{d x}\right|_{x=r_{S}}(a)+\left.\frac{1}{2} \frac{d^{2} \Delta r}{d x^{2}}\right|_{x=r_{S}}(a)^{2}+\ldots
$$

Similarly, we can deduce

$$
\Delta r_{S-1} \equiv \Delta r\left(r_{S-1}\right)=\Delta r_{S}+\left.\frac{d \Delta r}{d x}\right|_{x=r_{S}}(-a)+\left.\frac{1}{2} \frac{d^{2} \Delta r}{d x^{2}}\right|_{x=r_{S}}(-a)^{2}+\ldots
$$

So,

$$
F=C\left(\Delta r_{S+1}-\Delta r_{S}\right)+C\left(\Delta r_{S-1}-\Delta r_{S}\right)
$$

and we substitute in * and **

$$
\begin{aligned}
& =C\left(\left.\frac{d \Delta r}{d x}\right|_{x=r_{S}}(a)+\left.\frac{1}{2} \frac{d^{2} \Delta r}{d x^{2}}\right|_{x=r_{S}}(a)^{2}+\left.\frac{d \Delta r}{d x}\right|_{x=r_{S}}(-a)+\left.\frac{1}{2} \frac{d^{2} \Delta r}{d x^{2}}\right|_{x=r_{S}}(-a)^{2}\right) \\
& =C\left(\left.\frac{1}{2} \frac{d^{2} \Delta r}{d x^{2}}\right|_{x=r_{S}}(a)^{2}+\left.\frac{1}{2} \frac{d^{2} \Delta r}{d x^{2}}\right|_{x=r_{S}}(-a)^{2}\right)=\left.C a^{2} \frac{d^{2} \Delta r}{d x^{2}}\right|_{x=r_{s}}
\end{aligned}
$$

So using Newton's law $F=\frac{m d^{2} \Delta r_{s}}{d t^{2}}$, we get the wave equation

$$
\begin{gathered}
\frac{d^{2} \Delta r_{S}}{d t^{2}}=\left.\frac{c a^{2}}{m} \frac{d^{2} \Delta r}{d x^{2}}\right|_{x=r_{S}} \equiv v^{2} \frac{d^{2} \Delta r_{S}}{d x^{2}} \\
\left.\frac{d^{2} \Delta r}{d x^{2}}\right|_{x=r_{S}} \equiv \frac{d^{2} \Delta r_{S}}{d x^{2}}
\end{gathered}
$$

(3) Lattice waves for crystal having basis of two different atoms

At $\mathrm{k}=\pi /$ a the solutions for the two branches are $\omega^{2}=2 \mathrm{C} / \mathrm{M}_{1}$ (acoustical) and $\omega^{2}=2 \mathrm{C} / \mathrm{M}_{2}$ (optical) where it is assumed $\mathrm{M}_{1}>\mathrm{M}_{2}$. We substitute these back into the connection equations:

$$
\begin{align*}
& \left(2 C-M_{1} \omega^{2}\right) u-C[1+\exp (-j k a)] v=0 \tag{a}\\
& -C[1+\exp (j k a)] u+\left[2 C-M_{2} \omega^{2}\right] v=0 \tag{b}\\
& \text { (a) leads to } \frac{u}{v}=\frac{C[1+\exp (-j k a)]}{2 C-M_{1} \omega^{2}} \tag{c}\\
& \text { (b) leads to } \frac{u}{v}=\frac{2 C-M_{2} \omega^{2}}{C[1+\exp (j k a)]} \tag{d}
\end{align*}
$$

At $\mathrm{ka}=\pi, \exp (-\mathrm{jka})=\exp (\mathrm{jka})=-1$. So for acoustical branch, $\omega^{2}=2 C / M_{1}$,

$$
(c) \Rightarrow \frac{u}{v}=\frac{0}{0} \quad(d) \Rightarrow \frac{u}{v}=\frac{2 C\left(1-\frac{M_{2}}{M_{1}}\right)}{0} \rightarrow \infty
$$

$\mathrm{u} / \mathrm{v} \rightarrow \infty$ means that u is arbitrarily non-zero for $\mathrm{v}=0$. This means that all the motion is in u (main atom). For optical branch, $\omega^{2}=2 \mathrm{C} / \mathrm{M}_{2}$,

$$
\left.(c) \Rightarrow \frac{u}{v}=\frac{0}{2 C\left(1-\frac{M_{1}}{M_{2}}\right)}=0 \quad(d) \Rightarrow \frac{u}{v}=\frac{0}{0} \text { (undefined }\right)
$$

$u / v \rightarrow 0$ means that v is arbitrary non-zero for $u=0$, so that all the motion in v (satellite atom).
(4) Diatomic Chain

From assumptions of nearest neighbor-interaction, equal masses but unequal spring constants, C_{1} and C_{2} derived in lecture, the force equations on the atoms in the $\boldsymbol{s} \boldsymbol{t} \boldsymbol{h}$ unit cell

$$
\begin{aligned}
& m \frac{d^{2} \Delta r_{1}}{d t^{2}}=C_{1}\left(\Delta r_{2, s}-\Delta r_{1, S}\right)-C_{2}\left(\Delta r_{1, S}-\Delta r_{2, s-1}\right) \\
& m \frac{d^{2} \Delta r_{2, S}}{d t^{2}}=C_{2}\left(\Delta r_{1, s+1}-\Delta r_{2, S}\right)-C_{1}\left(\Delta r_{2, s}-\Delta r_{1, S}\right)
\end{aligned}
$$

Assuming the discrete wave solutions

$$
\Delta r_{1, S}=\Delta r_{1} e^{j(k s a-\omega t)}, \quad \Delta r_{2, S}=\Delta r_{2} e^{j(k s a-\omega t)}
$$

We found the coupled algebraic equations for the amplitudes Δr_{1} and Δr_{2}

$$
\left(\begin{array}{ll}
m \omega^{2}-C_{1}-C_{2} & C_{1}+C_{2} e^{-j k a} \\
C_{1}+C_{2} e^{j k a} & m \omega^{2}-C_{1}-C_{2}
\end{array}\right)\binom{\Delta r_{1}}{\Delta r_{2}}=0
$$

A non-trivial solution for $\Delta \mathrm{r}_{1}$ and $\Delta \mathrm{r}_{2}$ requires that the 2×2 matrix be non-invertible $\Rightarrow \operatorname{det}\}=0$

$$
\begin{gathered}
\Rightarrow \quad m^{2} \omega^{4}+\left(c_{1}+c_{2}\right)^{2}-2 m\left(c_{1}+c_{2}\right) \omega^{2}-\left(c_{1}^{2}+c_{2}^{2}+2 c_{1} c_{2} \cos k a\right)=0 \\
\omega^{2}=\frac{c_{1}+c_{2}}{m} \pm \frac{1}{m} \sqrt{\left(c_{1}+c_{2}\right)^{2}-2 c_{1} c_{2}(1-\cos k a)}\left\{\begin{array}{l}
+ \text { optical branch } \\
- \text { acoustical branch }
\end{array}\right.
\end{gathered}
$$

(a) At $\mathrm{ka}=0$

$$
\begin{aligned}
& \omega^{2}=\frac{c_{1}+c_{2}}{m} \pm \frac{c_{1}+c_{2}}{m}=0 \quad(- \text { sign,acoustical branch }) \\
& \omega^{2}=\frac{2\left(c_{1}+c_{2}\right)}{m}=\frac{22 c}{m} \text { for } c_{2}=10 \cdot c_{1} \equiv 10 c \\
& \text { or } \omega=\sqrt{\frac{22 c}{m}} \quad(+ \text { sign,optical branch })
\end{aligned}
$$

(b) At $\mathrm{ka}=\pi, \cos \mathrm{ka}=-1$

$$
\begin{aligned}
& \omega^{2}=\frac{c_{1}+c_{2}}{m} \pm \frac{1}{m} \sqrt{\left(c_{1}+c_{2}\right)^{2}-4 c_{1} c_{2}} \\
& \text { or } \left.\omega=\sqrt{\frac{c_{1}+c_{2}}{m} \pm \frac{1}{m} \sqrt{\left(c_{2}-c_{1}\right)^{2}}}=\sqrt{\frac{2 c_{1}}{m}} \equiv \sqrt{\frac{2 c}{m}} \quad \text { (-sign,acoustical branch }\right) \\
& \omega=\sqrt{\frac{2 c_{2}}{m}} \equiv \sqrt{\frac{20 c}{m}} \quad(+ \text { sign,optical branch })
\end{aligned}
$$

