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Homework 4 Solutions (first four problems only, for Quiz#1)

(1) Energy of lattice wave
a) Monotomic linear lattice, mass m, spacing a, nearest neighbor interaction (spring

constant) C. Consider longitudinal wave: A7 PR R A (a)t —ska ) . The total energy of

the wave is the sum over all atoms of the energy of each atom. From mechanics, we know
that the instantaneous energy of a harmonic oscillator has a kinetic energy term and a
potential energy term. The potential term depends only on the force constant and the
displacement of the oscillator from equilibrium. Thus the linear lattice can be repeated as a
series of springs with masses (atoms) attached.

The potential energy associated with the sth spring is

1 2 1 2
PES e 5 C(US+1—MS) = 5 C(US—MS+1)

The kinetic energy associated with the sth mass is

2
KE,—>Muv2=L (dusj
2 27\ dr

By summing over all atoms we get the total energy:

2
1 du 1 2
Ulr)= 5 M z (dts j Ty CZ (”s _”S+1) (instantaneous)

dug _
b) For longitudinal wave ¥ = U €OS (wt—ska) ,we have ~ 5 = —ou Sin (a)t —ska) and

2
U(t)= Z {;Ma)zu2 sin’ (ot—ska) + ; Cu® [cos(a)t—ska)—cos(a)t—ska—ka)J }
s

2
The last term has the form [COS(Of—ﬂ )—COSO!J with o = wt —ska, f =ka . So we can use the

trigonometric identity —cos (a—p) = cosacos f +sinasin B to write

2
U (t) = Z [;Ma)zuz sin2 a+;Cu2(cos a(cos ﬂ—l)+sina sinﬂ)}
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1
= z [;Ma)zuz} sin20{ + 5 Cu2 (cos2 a(cos ,8—1)2+2 cosa(cos ﬂ—l)sinasin ﬂJrsin2 asin? ,B)
N

To get the average, we integrate over the period of wave, t

o [otd e

T
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f sinzadt:g; j coszadt:;; J 2sinacosadt:j sin 2adt = 0
o o

o 2

So,
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U:ZMa) u +ZCu cos” f—2cos f+1+sin” =ZMa) u +§Cu [l—cosﬂ]

U
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For linear monatomic lattice we have @ = 7 (l—cosﬁ ) . So finally

_ 1 1 1

(2) Continuum wave equation

For nearest neighbor-interaction, the force on a given atom (labeled by s) is given by
F=C (A”S+I—Ars) -C (A’”s —A”s—l) where we also assume spring constants are equal to

C. For long wavelength lattice waves, we know Ars.; will nearly in phase and nearly equal
amplitude to Ars. Also, Ars.; will be nearly in phase and equal amplitude to Ars. So we can
Taylor expand Ars;; and Ars.j, thinking of each as a function of the atom average position r.

Thus we can write

Ar 1= Ar(rs+1); Ars = Ar(rs); Ars—l = Ar(rs_l).

And by Taylor expansion (to 2™ order)

dAr 1 dzAr

Ars+l = Ar (”s+1) = Ar(rs) + = - (rs+1 —rs) + 0 diz
=Ts " lr=rg

2
(”s+1_”s)
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But for uniform lattice constant d, rs+; — rs = a. And for lattice oriented along x axis, r — x
(without loss of generality). Thus,

2
1
g =+ (@) 2dd§r ()4 "
X=r, X x=rg
Similarly, we can deduce
dAr 1 d2Ar 2
Ar I_Ar(rs_l)—Ar +— - ) 5 5 (—a) +... ok
dx lx=r 2 dx =7
So, F = C(Argy1-Arg) + C(Arg_1—Ary)
and we substitute in * and **
S L A s O R N S
dx x=rg 2 a2 1 ax |y 2 a2 =
2
1d%Ar 2 1d°Ar 2 2, d”Ar
o355 @Y (e |-G S
2 dx _ 2 g _ dx B
X=Fg X=rg X=7,
) mdzArS )
So using Newton’s law £ = 7 , we get the wave equation
dzArS B ca® dzAr‘ 2 dzArS
i omoa?|
X x=ryg *
d2Ar| dPAr
where 2 -2
d.
dx X=rg *

(3) Lattice waves for crystal having basis of two different atoms

At k = nt/a the solutions for the two branches are »*=2C/M; (acoustical) and ©*=2C/M, (optical)
where it is assumed M; > M, . We substitute these back into the connection equations:
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(2C—M1a)2)u ~C| ltexp(—jka) [v =0 (a)
~C | Lrexp(jka) Ju + [ZC—Mza)z} v=0 (b)

(a)leads to v C[l+exp(—jka)] (c)
Vo 20-Mjw?

2

u 2C-Mrow

(b)leads 0, = 1 exp{a)]

()

At ka = i, exp(-jka) = exp(jka) = -1. So for acoustical branch, ®*=2C/M,

M2j

2C| 1-—%

(c)jﬁzg (d):uz(jwl_)w
v 0 % 0 -

u/v —oo means that u is arbitrarily non-zero for v = 0. This means that all the motion is in u
(main atom). For optical branch, ®*=2C/M,,

(e) = = w(?ﬁl) =0 (d)=" = %(zmdeﬁned)
2

u/v — 0 means that v is arbitrary non-zero for u =0, so that all the motion in v (satellite atom).

(4) Diatomic Chain

From assumptions of nearest neighbor-interaction, equal masses but unequal spring constants, C,
and C, derived in lecture, the force equations on the atoms in the sth unit cell

2
m dthzrl =G (A”Z,S_A”l,s)_ ¢, (A”l,s _A”z,s—l)
2
m dcigzs =G, (A’”l,sﬂ_A”z,s ) -G (A’”z,s_A”l,s)

Assuming the discrete wave solutions

We found the coupled algebraic equations for the amplitudes Ar and Ar,
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Ary
. = 0
C+Ce™  mw*-G-C, || ar,

ma®—C-Cy  Ci+Cye /¥

A non-trivial solution for Ar; and Ar; requires that the 2x2 matrix be non-invertible = det{ } =0

2

2
— mza)4 + (Cl-l—Cz) —2m (Cl‘l‘Cz) (02 — (Cl +022+26‘1€2 coska) =0

* optical branch
a)2 _ C1+C N 1

2
—\/ C1+Cp )~ —-2C1Co(1—-coska
m m ( ) ( ) — acoustical branch

(a) Atka=0
C+C C+C
(02 S Bt it e RN (— sign,acoustical branch)
m m
2(¢+cC 22¢
o2 2 2ate) for ¢, =10-¢, =10¢C
m m
or m = 22¢ <+ sign,optical branch)
m

(b) Atka=m, coska=-1

2 CI+CZ +i

p— 2_
o = . o \/(Cl +Cz) 46102

or @ = \/Cﬁczil«/(cz_cl)z = \/201 = )2—0 (—sign,acoustical branch)
m m m m
W = )& = )2()—6 (+sign,0ptical branch)
m m




