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(1) Kinetic Energy of Electron Gas 

The mean energy is, ( ) ( )
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(2) Classical limit of Fermi gas.   

(a) The classical limit corresponds to (U-UF) >> kBT (this will be proven below), so that fFD = 

[exp(U-UF)/kBT + 1]-1  ≈ [exp(U-UF)/kBT]-1 = exp(UF/kBT)exp(-U/kBT) for any U > 0.  Hence, 

the mean energy is given by 

F B B F B
1/2 5/2(2) (m*k T) VU /k T -U/k T U /k T 3/2 -xB<U> 2e D(U)Ue dU= e (x) e dx0 2 3π 0
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The latter integral is evaluated as a Gamma function by the following identity from applied 
mathematics 
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n-1 -1Γ(n)= x e dx
0
∫
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Thus we a mean specific energy:  
F BU /k T3 2 5 22(m*) (k T) e<U> B (5/2)

2 3V 2π

/
= Γ    

      
Two very useful evaluations of Γ(n) are Γ(3/2) = (π)1/2/2 and Γ(5/2) = 3(π)1/2/4.  Substitution of 
Γ(5/2) results in 
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To reduce this further we use the fact that the number of electrons is fixed in the Fermi model, 
and in the same classical approximation becomes 
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Substitution of Γ(3/2) = (π)1/2/2 results in 
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Substitution of this back into (1) yields  
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(b) From (2) we can write the following expression of UF in terms of ρ, T, and m*: 
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Since ln(1) = 0, the density that drives UF to 0 is, for m* = me , 
3 2
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From (4), if the temperature is increased at this density, UF has to go negative.  The physical 
meaning of this is realized by recalling that the temperature-dependent Fermi energy is really the 

chemical potential µ.  From the 1st law of thermodyamics, 
Uµ=
N

∂
∂ , i.e., the change of energy with 

respect to change of particle number.  So a negative UF means that the addition of electrons to 
the Fermi gas (which would have to be done by an outside force) would reduce the total energy. 
 
(c) From (3) we get CV ≈ d<U>/dT = (3/2)<Ne>kB .  This is just the electronic analog of the 
Dulong-Petit law for phonons, but a factor of two smaller.  The factor of two can be explained by 
the classical law of equipartition: i.e., there is (1/2)kBT of energy per “degree-of-freedom” .  In 
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the case of electrons there are three degrees-of-freedom – three Cartesian components of the 
kinetic energy.  For the phonons, there were six – three Cartesian components of the kinetic and 
potential energies. 
(3) Chemical Potential in Two Dimensions 

In general, ( ) ( )
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Where ρS is the sheet density 

(4) For arbitrary temperatures we must resort to the generic form of 
3 2 3/23 2 1 22(m*) (k T) V2(m*) V x1/2 B<N >= f (U)U dU= dxe FD0 02 3 2 3 exp[x-x ]+1F2π 2π
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where x ≡ U/kBT and xF ≡ UF/kBT, and  
yxF (x )= dxy F 0 exp[x-x ]+1F

∫∞  

This is easy evaluate numerically in Matlab using xF as a parameter.  Some results obtained with 
the quadl.m function in Matlab (Lobatto algorithm) are tabulated below and plotted in Figs 1 and 
2 assuming m* = me and T = 300 K. 

Table I 
xF F1/2(XF) ρ [m−3] 
-20 1.75E-09 5.0E+16 
-10 4.01E-05 1.1E+21 
0 6.78E-01 1.9E+25 
10 2.13E+01 6.0E+26 
20 5.98E+01 1.7E+27 
30 1.10E+02 3.1E+27 
40 1.69E+02 4.8E+27 
50 2.36E+02 6.7E+27 
60 3.10E+02 8.8E+27 
70 3.91E+02 1.1E+28 
80 4.77E+02 1.4E+28 
90 5.69E+02 1.6E+28 

100 6.67E+02 1.9E+28 
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Fig. 1.  Blue curve: numerical solution for the Fermi integral of order ½.  The dashed 
green and red lines are the low-temperature (degenerate) and high-temperature (non-
degenerate) approximations, respectively.  Notice how well the two approximations 
work except around xF = 0. 
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Very important:  Table I and Fig. 1 represent the numerical/graphical proofs of our earlier 
(assumed) definition of the classical (i.e., nondegenerate) limit of the Fermi gas: fFD   ≈ 
exp(UF/kBT)exp(-U/kBT) for any U > 0.  To make this clearer, Table II “zooms-in” on the 
values of xF in the range –10 < xF < 10 and lists the quantity exp(-xF) ≡ exp(-UF/kBT).  
Clearly this quantity is >> 1 for xF < 0 and |xF| >> 1, so that exp(U/kBT)exp(-UF/kBT) is also 
>> 1 under the same conditions since the energy is always defined positive for a Fermi gas 
(because there is kinetic energy only) and exp(U/kBT) > 1 for any positive U.  Hence, fFD = 
[exp(U/kBT)exp(-UF/kBT) + 1]–1 << 1, which is why this limit is called “nondegenerate”; i.e., 
the electrons are “not degenerated” into the same energy states.  Clearly, the definition of this 
limit by the simple relation xF < 0 and |xF| >> 1 is subtle.  It is better stated by spelling out the 
definition of x, leading to UF < 0 and |UF | >>  kBT .  Clearly it is not enough just to say that 
UF < 0 -  a mistake sometimes made in semiconductor device engineering. 
 

Table II 
xF exp(-xF) 
-10 2.20E+04 
-9 8.10E+03 
-8 2.98E+03 
-7 1.10E+03 
-6 4.03E+02 
-5 1.48E+02 
-4 5.46E+01 
-3 2.01E+01 
-2 7.39E+00 
-1 2.72E+00 
0 1.00E+00 
1 3.68E-01 
2 1.35E-01 
3 4.98E-02 
4 1.83E-02 
5 6.74E-03 
6 2.48E-03 
7 9.12E-04 
8 3.35E-04 
9 1.23E-04 
10 4.54E-05 
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(5) Screening and plasmons 

(a) In the notes we derived an expression for the Debye screening length of  
βD=  [(εkBT/ e2ρ0)]1/2 

to describe the length scale over which the free electron Fermi gas responds to a spatial variation 
in the electrostatic potential in the classical limit.  βD is very useful in the description of 
electrostatic effects in semiconductors, for example.  Although we did not say it at the time, the 
Maxwell-Boltzmann distribution of velocities discussed in class is, indeed, the classical (i.e., 
“non-degenerate” limit) of the free-electron Fermi gas.  In HW#2 we derived the variance of the 
velocity for the Maxwell-Boltzmann distribution <(∆v)2> = 3kBT/m.  From elementary 
probability theory, the “rms” value is just the square-root of the variance, so vrms = (3kBT/m)1/2 .  
In our discussion of long-wavelength plasma waves, we derived the circular plasma resonance 
frequency ωp =  [e2ρ0/me)]1/2.  The substitution of vrms and ωp into βD yields the fascinating result:  

vrmsβ =
1/2(3) ωp

 

(b) In a derivation similar to ours but done in terms of a dielectric function and in wave-vector 
space, a quantity similar to βD can be derived for the response of the free-electron Fermi gas 
in the quantum (i.e., “degenerate”) limit.  It is called the Thomas-Fermi screening length in 
honor of those who first derived it, and is given by βTF = (2εUF/3ne2)1/2 [in MKS units].   
Since the electron gas is assumed degenerate, we can approximate UF ≈ UF0 .   In the notes 
we derived an alternative metric – the Fermi velocity vF – by the definition UF0 ≡ 
(1/2)m(vF)2. Substitution leads to βTF = vTF (m/3ne2)1/2 , which when combined with the 
definition of ωp leads to  

vFβ  = TF 1/2(3) ωp
 

 

1.0E+17

1.0E+19

1.0E+21

1.0E+23

1.0E+25

1.0E+27

1.0E+29

-20 0 20 40 60 80 100
xF

ρ
 [m

-3
]

 
Fig. 2.   Numerical solution to the carrier concentration over the range of xF in Fig. 1 assuming 
m* = me and T = 300 K. 
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another fascinating result and a great mnemonic tool for βTF .  Note that it has exactly the 
same (reciprocal) dependence on the plasma frequency as βD , and a direct dependence on the 
characteristic velocity.  For a “degenerate” Fermi gas, the characteristic velocity is vF.  For a 
“non-degenerate” Fermi gas it is vrms =(3kBT/m)1/2.  
 
(c) For engineering purposes it is useful to calculate the Fermi-gas quantities and their classical  
limits for important materials, such as GaAs and copper.  These are listed in the Table below 
assuming for GaAs assume n =2.0x1018 cm-3, εr = 12.8, m* = 0.067 me; and for Cu  
ρ = 8.4x1022 cm-3, εr = 1, and m* = me .  The table has two purposes.  First, it provides quantitative 
insight into how the electrons behave in all electronic materials, since GaAs is representative of  
many semiconductors and Cu is representative of many metals.  Second, it indicates how 
much error is incurred by making incorrect assumptions, such as assuming a Debye screening  
length in a metal instead of the Thomas-Fermi screening length. 
 

Table II 
Material GaAs Copper 
Carrier concentration [1/cm^3] 2.0E+18 8.4E+22 
Temperature [K] 300 300 
Relative dielectric constant 12.8 1.0 
Effective mass [m*/me] 0.067 1.0 
Circular plasma freq [1/s] 8.6E+13 1.6E+16 
Linear plasma freq [1/s] 1.4E+13 2.6E+15 
Maxwell-Boltzmann rms velocity [m/s] 4.5E+05 1.2E+05 
Fermi energy [J]; [eV] 1.4E-20 ; 0.086 1.1E-18 ; 7.0 
Fermi velocity [m/s] 6.7E+05 1.6E+06 
Debye screening length [m] 3.0E-09 4.1E-12 
T-F screening length [m] 4.5E-09 5.5E-11 
 


