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Homework 7 Solutions

1. Non-parabolic conduction band.
21,2
For “non-parabolic” conduction band of many semiconductors, e =U (1 +al )
m
The key point is that this relationship, like the Fermi-electron U-vs-k relationship, is
spherically symmetric in k space. So
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Solving for k*, we get k® = [
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And D(U)=—= U+aU?| (1+2aU

Note: In the limit where oo — 0, this gives the correct expression for a parabolic

NEY)
band: D(u)ezvz(zrz? J U
T

2. Square lattice, free-electron energies:

(a). The wavevector at the corner is longer than the wavevector at the midpoint of a side

2
by the factorv/2 . Since U oc k? for a free electron, the energy is higher by (\/5 ) =2.

2
(b). In 3D the energy is higher at a corner by (\/5 ) than at midpoint of a face.

(c). If the band gap at the midpoint of a face is less than the kinetic energy difference
between this point and a corner, the electrons will spill-over into the n =2 band in
preference to filling the corner states in the n = 1 band. Divalent elements under these
conditions will be metals and not insulators.

3. Kinematics of free electrons for the fcc lattice.
: : : 2|k +G [
(a). We start with the “aliased” energy expression for the free electron, U = h|2—+G| ,
m

For k along the [111] direction, we can write from Kittel Chap. 2, |K | = (2—7[)(1,1, Hu,
a
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with 0 <u <1, to stay within the 1¥ BZ below the Nyquist wave vector. The reciprocal
lattice vectors can be written as

G:(%)[(h—k+I))A(+(h+k—|)§/+(—h+k+|)2},whereh, k, 1 are any integers.

Thus U :[%](%jz[(u+h—k+l)z+(u+h+k—|)2+(u—h+k+l)2]

We now have to consider all combinations of indices h, k, 1 for which the term in
brackets is smaller than 6[3(1/ 2)2} =9/2. This is done easily in Excel by trying all

different permutations up to, say, h =k =1= 3, and then sorting. There are 15 resulting G
vectors, specified by the Miller convention as G = (000); (-1,—-1,-1); (-1,0,0),

(0,-1,0), and (0,0,—1); (1,0,0), (0,1,0), and (0,0,1); (1,1,1); (-1,-1,0), (~1,0,—1), and
(0,-1,-1), (110), (101), and (011),

4. Square lattice with potential energy

As in most cases of Fourier analysis, it is best to express a real sinusoid in complex
exponential form for analytic simplicity. The given form of the potential energy can be
written V(X,y) = -4Vcos(2nx/a)cos(2my/a) can be so-written (great exercise in successive
use of Euler’s identity: &’ = coskx + jsinkx):

vV (X, y) —_V (ej(zﬂ/a)(x+y) " ej(zfr/a)(—x+y) n ej(z;r/a)(xfy) " ej(z;r/a)(fxfy))

This makes it clear that Fourier decomposition of V(F) = ZVG e/®" will have four Fourier
G

components (assuming as always that Vg—o = 0), but they all equal -V. In setting up the
central equation, we note that at the corner (Nyquist) point of the square lattice the
Fourier component of the Bloch wave function is Cx = Crga But there will be strong
Bragg scattering at this point and hence strong excitation of the reverse traveling wave,

.. 2
Cx.g = C-pa-wa - Hence, although there are four significant G vectors (—ﬁj(il;il)
a

there are only two significant Cx components in the central equation. Thus, in the
notation of Prof. Brown’s notes

We s Ve e =
k-G, "G Ck-G1 —0 W_n/a,-n/a \ C.n/a,-n/a ~0
Vél Wi Cp or Vv Wr/a,n/a Cr/a

A zero determinant of the C matrix means that
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By defining Uy = 277z°/2m,d*, the determinant becomes

det?

2’

\

(Up-Ux +V)(Up-Uk )=Uk - Uk QU +V)+Ug(Up+V) =0

This is a simple quadratic equation in Uy which has the solution
Ux=Up+V/2x£V/2;1e., Ui=Uj(n=1)or Uy+ V (n=2)

So the band gap at the corner point is simply equal to V !

5. Silicon statistical mechanics

(a) Density of states of single ellipsoid
For ellipsoidal constant energy surface oriented along X axis we have

U U (k kxo) (ky'kyo)z_i_(kz'kzo)2

*
m, m m, (*)

t

XZ 2 2
From geometry we know that an ellipsoid ey + b + P =1 has a volume given by V
= (4/3)mabc. This makes us rewrite (*) as
2 2 2
(kx_kxo) (kv_kvo) (kz_kzo)

~2m(AU)/7 T 2m(AU)/n2 T 2mAU/R

where AU =U —U_ . So a constant energy U surface defined about

k (kxo ) kyo s kzo ) will have a volume given by

v_4 J2ZMAU 2mAU /2mAU _ 4z ymm; (24U )"
3 h h h 3 IR

N(E) > N (U) = v 4z |/mm? 2AU oy YymmE(2aU)”
and Az’ 3 "3 w’
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_dN _ VvV 3 232 mlmfAUl/z B V\/E\/m(U-UC)m
8, (V=40 =322 n - o
J2v(m;)" (u-u,)

If we define: 9 (U ) o ,

then m: = (mlmt2)2/3 = \/3 m, mt2

and the specific density-of-states is

. V2 mm? (U-U, )"

243
°h :

g'(U
(b) Evaluation of key statistical mechanical properties for Si: At low temperature:
m_=0.98 m,, m,=0.19 m,, m, =0.16 m,, m,, =0.49 m,, U,=1.15 eV

a) so that density-of-states effective mass = m; c= N memf =0.33 m,

* * % \3/2 % \¥2 2/3
In valance band Mg = md,v :{(mm) +(mhh) } =0.55 m,

These numbers are only valid at low temperatures. At 300 K, data tables show
mz,c ~ (.36 because band gap drops and masses rise with temperature. Also,

mi;v ~0.81 m, because M, & M, both increase too.

b) effective density-of-states

% 3/2
2mg ckpT
N (T) —M[d’CZBJ Z321x10%° m> =322x10" cm®

4 7h @ 300 K

" 32
1| 2mg vkT | 25 3 19 3

1/2 UG /2KT _ | 4 1010

forUg=1.11eV @ 300 K

n; (T) = (NcNy )

At 450 K, masses change again; so does Ug

* *
md,c—>0.375m0, My y = 0:873m;, Ugs U107 oy

vV G

Ne(T) > 6.35x10" cm™ , Ny(T) > 3.76x10" em™, ny(T) —> 4.96x10" cm™



