## Homework 7 Solutions

## 1. Non-parabolic conduction band.

For "non-parabolic" conduction band of many semiconductors, $\frac{\hbar^{2} k^{2}}{2 m^{*}}=U(1+\alpha U)$
The key point is that this relationship, like the Fermi-electron U-vs-k relationship, is spherically symmetric in k space. So

$$
N(k)=2\left(\frac{L}{2 \pi}\right)^{3} \underbrace{\frac{4}{3} \pi k^{3}}_{\text {spin }} \text { (number of states between } \mathrm{k}=0 \text { and } \mathrm{k} \text { ) }
$$

Solving for $\mathrm{k}^{3}$, we get $k^{3}=\left[\frac{2 m^{*}}{\hbar^{2}}\right]^{3 / 2}[U(1+\alpha U)]^{3 / 2}$.
So $N(U)=\frac{V}{3 \pi^{2}}\left(\frac{2 m^{*}}{\hbar^{2}}\right)^{3 / 2}\left[U+\alpha U^{2}\right]^{3 / 2}$
And $D(U)=\frac{d N}{d U}=\frac{V}{2 \pi^{2}}\left(\frac{2 m^{*}}{\hbar^{2}}\right)^{3 / 2}\left[U+\alpha U^{2}\right]^{1 / 2}(1+2 \alpha U)$
Note: In the limit where $\alpha \rightarrow 0$, this gives the correct expression for a parabolic band: $D(U) \rightarrow \frac{V}{2 \pi^{2}}\left(\frac{2 m^{*}}{\hbar^{2}}\right)^{3 / 2} U^{1 / 2}$

## 2. Square lattice, free-electron energies:

(a). The wavevector at the corner is longer than the wavevector at the midpoint of a side by the factor $\sqrt{2}$. Since $U \propto k^{2}$ for a free electron, the energy is higher by $(\sqrt{2})^{2}=2$.
(b). In 3D the energy is higher at a corner by $(\sqrt{3})^{2}$ than at midpoint of a face.
(c). If the band gap at the midpoint of a face is less than the kinetic energy difference between this point and a corner, the electrons will spill-over into the $\mathrm{n}=2$ band in preference to filling the corner states in the $\mathrm{n}=1$ band. Divalent elements under these conditions will be metals and not insulators.

## 3. Kinematics of free electrons for the fcc lattice.

(a). We start with the "aliased" energy expression for the free electron, $U=\frac{\hbar^{2}|\vec{k}+\vec{G}|^{2}}{2 m}$,.

For k along the [111] direction, we can write from Kittel Chap. $2,|\vec{k}|=\left(\frac{2 \pi}{a}\right)(1,1,1) u$,

## Prof. Brown/ECE Dept/UCSB

with $0<u<\frac{1}{2}$, to stay within the $1^{\text {st }} \mathrm{BZ}$ below the Nyquist wave vector. The reciprocal lattice vectors can be written as
$\vec{G}=\left(\frac{2 \pi}{a}\right)[(h-k+l) \hat{x}+(h+k-l) \hat{y}+(-h+k+l) \hat{z}]$, where $\mathrm{h}, \mathrm{k}, \mathrm{l}$ are any integers.
Thus $U=\left(\frac{\hbar^{2}}{2 m}\right)\left(\frac{2 \pi}{a}\right)^{2}\left[(u+h-k+l)^{2}+(u+h+k-l)^{2}+(u-h+k+l)^{2}\right]$.
We now have to consider all combinations of indices $h, k, 1$ for which the term in brackets is smaller than $6\left[3(1 / 2)^{2}\right]=9 / 2$. This is done easily in Excel by trying all different permutations up to, say, $\mathrm{h}=\mathrm{k}=\mathrm{l}=3$, and then sorting. There are 15 resulting G vectors, specified by the Miller convention as $G=(000) ;(-1,-1,-1) ;(-1,0,0)$, $(0,-1,0)$, and $(0,0,-1) ;(1,0,0),(0,1,0)$, and $(0,0,1) ;(1,1,1) ;(-1,-1,0),(-1,0,-1)$, and $(0,-1,-1),(110),(101)$, and (011).

## 4. Square lattice with potential energy

As in most cases of Fourier analysis, it is best to express a real sinusoid in complex exponential form for analytic simplicity. The given form of the potential energy can be written $\mathrm{V}(\mathrm{x}, \mathrm{y})=-4 \mathrm{~V} \cos (2 \pi \mathrm{x} / \mathrm{a}) \cos (2 \pi \mathrm{y} / \mathrm{a})$ can be so-written (great exercise in successive use of Euler's identity: $\left.\mathrm{e}^{\mathrm{jkx}}=\operatorname{coskx}+\mathrm{j} \operatorname{sinkx}\right)$ :

$$
V(x, y)=-V\left(e^{j(2 \pi / a)(x+y)}+e^{j(2 \pi / a)(-x+y)}+e^{j(2 \pi / a)(x-y)}+e^{j(2 \pi / a)(-x-y)}\right)
$$

This makes it clear that Fourier decomposition of $V(\vec{r})=\sum_{G} V_{G} \mathrm{e}^{\mathrm{j} \cdot \vec{F} \cdot \vec{r}}$ will have four Fourier components (assuming as always that $\mathrm{V}_{\mathrm{G}=0}=0$ ), but they all equal -V . In setting up the central equation, we note that at the corner (Nyquist) point of the square lattice the Fourier component of the Bloch wave function is $\mathrm{C}_{\mathrm{k}}=\mathrm{C}_{\pi / \mathrm{d}, \pi / \mathrm{d}}$ But there will be strong Bragg scattering at this point and hence strong excitation of the reverse traveling wave, $\mathrm{C}_{\mathrm{k}-\mathrm{G}}=\mathrm{C}_{-\pi / \mathrm{d},-\pi / \mathrm{d}}$. Hence, although there are four significant G vectors $\left(\frac{2 \pi}{a}\right)( \pm 1 ; \pm 1)$ there are only two significant $\mathrm{C}_{\mathrm{k}}$ components in the central equation. Thus, in the notation of Prof. Brown's notes
$\left(\begin{array}{cc}\mathrm{W}_{\overrightarrow{\mathrm{k}}-\overrightarrow{\mathrm{G}}_{1}} & \mathrm{~V}_{\overrightarrow{\mathrm{G}}_{1}} \\ \mathrm{~V}_{\overrightarrow{\mathrm{G}}_{1}} & \mathrm{~W}_{\overrightarrow{\mathrm{k}}}\end{array}\right)\left[\begin{array}{c}\mathrm{C}_{\overrightarrow{\mathrm{k}}-\overrightarrow{\mathrm{G}}_{1}} \\ \mathrm{C}_{\overrightarrow{\mathrm{k}}}\end{array}\right]=0 \quad$ or $\left(\begin{array}{cc}\mathrm{W}_{-\pi / \mathrm{a},-\pi / \mathrm{a}} & \mathrm{V} \\ \mathrm{V} & \mathrm{W}_{\pi / \mathrm{a}, \pi / \mathrm{a}}\end{array}\right)\left[\begin{array}{c}\mathrm{C}_{-\pi / \mathrm{a},-\pi / \mathrm{a}} \\ \mathrm{C}_{\pi / \mathrm{a}}\end{array}\right]=0$

A zero determinant of the C matrix means that

$$
\operatorname{det}\left\{\begin{array}{cc}
\frac{\hbar^{2}}{2 m_{e}}\left(\frac{2(-\pi)^{2}}{d^{2}}\right)-U & V \\
V & \frac{\hbar^{2}}{2 m_{e}}\left(\frac{2(\pi)^{2}}{d^{2}}\right)-U
\end{array}\right\}
$$

By defining $\mathrm{U}_{0}=2 \hbar \pi^{2} / 2 m_{e} d^{2}$, the determinant becomes

$$
\left(\mathrm{U}_{0}-\mathrm{U}_{\mathrm{k}}+\mathrm{V}\right)\left(\mathrm{U}_{0}-\mathrm{U}_{\mathrm{k}}\right)=\mathrm{U}_{\mathrm{k}}^{2}-\mathrm{U}_{\mathrm{k}}\left(2 \mathrm{U}_{0}+\mathrm{V}\right)+\mathrm{U}_{0}\left(\mathrm{U}_{0}+\mathrm{V}\right)=0
$$

This is a simple quadratic equation in $U_{k}$ which has the solution

$$
\mathrm{U}_{\mathrm{k}}=\mathrm{U}_{0}+\mathrm{V} / 2 \pm \mathrm{V} / 2 \text {; i.e., } \mathrm{U}_{\mathrm{k}}=\mathrm{U}_{0}(\mathrm{n}=1) \text { or } \mathrm{U}_{0}+\mathrm{V}(\mathrm{n}=2)
$$

So the band gap at the corner point is simply equal to V !

## 5. Silicon statistical mechanics

(a) Density of states of single ellipsoid

For ellipsoidal constant energy surface oriented along $x$ axis we have

$$
\begin{equation*}
\mathrm{U}-\mathrm{U}_{\mathrm{C}}=\frac{\hbar^{2}}{2}\left[\frac{\left(\mathrm{k}_{\mathrm{x}}-\mathrm{k}_{\mathrm{x} 0}\right)^{2}}{\mathrm{~m}_{1}}+\frac{\left(\mathrm{k}_{\mathrm{y}}-\mathrm{k}_{\mathrm{Y} 0}\right)^{2}}{\mathrm{~m}_{\mathrm{t}}}+\frac{\left(\mathrm{k}_{\mathrm{z}}-\mathrm{k}_{\mathrm{z} 0}\right)^{2}}{\mathrm{~m}_{\mathrm{t}}}\right] \tag{*}
\end{equation*}
$$

From geometry we know that an ellipsoid $\frac{x^{2}}{\mathrm{a}^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ has a volume given by V $=(4 / 3) \pi$ abc. This makes us rewrite $\left({ }^{*}\right)$ as

$$
1=\frac{\left(k_{X}-k_{X 0}\right)^{2}}{2 m_{l}(\Delta U) / \hbar^{2}}+\frac{\left(k_{Y}-k_{Y 0}\right)^{2}}{2 m_{t}(\Delta U) / \hbar^{2}}+\frac{\left(k_{Z}-k_{Z 0}\right)^{2}}{2 m_{t} \Delta U / \hbar^{2}}
$$

where $\Delta U \equiv U-U_{C}$. So a constant energy $U$ surface defined about $\vec{k}_{0}=\left(k_{x 0}, k_{\mathrm{Y} 0}, k_{\mathrm{z} 0}\right)$ will have a volume given by

$$
V=\frac{4}{3} \pi \frac{\sqrt{2 m_{l} \Delta U}}{\hbar} \frac{\sqrt{2 m_{t} \Delta U}}{\hbar} \frac{\sqrt{2 m_{t} \Delta U}}{\hbar}=\frac{4 \pi}{3} \frac{\sqrt{m_{l} m_{t}^{2}}(2 \Delta U)^{3 / 2}}{\hbar^{3}}
$$

and $N\left(\vec{k}_{0}\right) \rightarrow N(U)=\frac{V}{4 \pi^{3}} \frac{4 \pi}{3} \frac{\sqrt{m_{l} m_{t}^{2}}(2 \Delta U)^{3 / 2}}{\hbar^{3}}=\frac{V}{3 \pi^{2}} \frac{\sqrt{m_{l} m_{t}^{2}}(2 \Delta U)^{3 / 2}}{\hbar^{3}}$

$$
\begin{aligned}
& \qquad \mathrm{g}_{\mathrm{n}}(\mathrm{U})=\frac{\mathrm{dN}}{\mathrm{dU}}=\frac{\mathrm{V}}{3 \pi^{2}} \frac{3}{2} \frac{2^{3 / 2} \sqrt{\mathrm{~m}_{1} \mathrm{~m}_{\mathrm{t}}^{2}} \Delta \mathrm{U}^{1 / 2}}{\hbar^{3}}=\frac{\mathrm{V} \sqrt{2} \sqrt{\mathrm{~m}_{1} \mathrm{~m}_{\mathrm{t}}^{2}}\left(\mathrm{U}-\mathrm{U}_{\mathrm{C}}\right)^{1 / 2}}{\pi^{2} \hbar^{3}} . \\
& \text { If we define: } g(U) \equiv \frac{\sqrt{2} V\left(m_{d}^{*}\right)^{3 / 2}\left(U-U_{c}\right)}{\pi^{2} \hbar^{3}}, \\
& \text { then } \\
& \quad m_{d}^{*}=\left(m_{1} m_{t}^{2}\right)^{2 / 3}=\sqrt[3]{m_{l} m_{t}^{2}}
\end{aligned}
$$

then
and the specific density-of-states is

$$
g^{\prime}(U)=\frac{\sqrt{2} \sqrt{m_{l} m_{t}^{2}}\left(U-U_{C}\right)^{1 / 2}}{\pi^{2} \hbar^{3}}
$$

(b) Evaluation of key statistical mechanical properties for Si : At low temperature:

$$
\mathrm{m}_{\mathrm{e}}=0.98 \mathrm{~m}_{0}, \mathrm{~m}_{\mathrm{t}}=0.19 \mathrm{~m}_{0}, \mathrm{~m}_{\mathrm{lh}}^{*}=0.16 \mathrm{~m}_{0}, \mathrm{~m}_{\mathrm{hh}}^{*}=0.49 \mathrm{~m}_{0}, \mathrm{U}_{\mathrm{G}}=1.15 \mathrm{eV}
$$

a) so that density-of-states effective mass $\Rightarrow m_{d, c}^{*}=\sqrt[3]{m_{e} m_{t}^{2}}=0.33 m_{0}$

In valance band $m_{d}^{*} \Rightarrow m_{d, v}^{*}=\left[\left(m_{l h}^{*}\right)^{3 / 2}+\left(m_{h h}^{*}\right)^{3 / 2}\right]^{2 / 3}=0.55 m_{0}$
These numbers are only valid at low temperatures. At 300 K , data tables show $\mathrm{m}_{\mathrm{d}, \mathrm{c}}^{*} \approx 0.36$ because band gap drops and masses rise with temperature. Also, $\mathrm{m}_{\mathrm{d}, \mathrm{v}}^{*} \approx 0.81 \mathrm{~m}_{0}$ because $m_{l h}^{*} \& m_{h h}^{*}$ both increase too.
b) effective density-of-states

$$
\begin{aligned}
& N_{C}(T)=\frac{M}{4}\left(\frac{2 m_{d, c}^{*} k_{B} T}{\pi \hbar^{2}}\right)^{3 / 2}=3.21 \times 10^{25} \mathrm{~m}^{3}=3.22 \times 10^{19} \mathrm{~cm}^{3} @ 300 \mathrm{~K} \\
& N_{V}(T)=\frac{1}{4}\left(\frac{\left.2 m_{d, v^{2} k_{B} T}^{* \hbar^{2}}\right)^{3 / 2}=1.83 \times 10^{25} \mathrm{~m}^{3}=1.83 \times 10^{19} \mathrm{~cm}^{3} @ 300 \mathrm{~K}}{n_{i}(T)=\left(N_{C} N_{V}\right)^{1 / 2} e^{-U_{G} / 2 k_{B} T}=1.14 \times 10^{10} \mathrm{~cm}^{3}} \begin{array}{l}
\text { for } \mathrm{U}_{\mathrm{G}}=1.11 \mathrm{eV} @ 300 \mathrm{~K}
\end{array}\right.
\end{aligned}
$$

At 450 K , masses change again; so does $\mathrm{U}_{\mathrm{G}}$

$$
\begin{aligned}
& m_{d, c}^{*} \rightarrow 0.375 m_{0}, m_{d, v}^{*} \rightarrow 0.873 m_{0}, U_{G} \square 1.07 \mathrm{eV} \\
& \mathrm{~N}_{\mathrm{C}}(\mathrm{~T}) \rightarrow 6.35 \times 10^{19} \mathrm{~cm}^{-3}, \mathrm{~N}_{\mathrm{V}}(\mathrm{~T}) \rightarrow 3.76 \times 10^{19} \mathrm{~cm}^{-3}, \mathrm{n}_{\mathrm{i}}(\mathrm{~T}) \rightarrow 4.96 \times 10^{13} \mathrm{~cm}^{-3}
\end{aligned}
$$

