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Homework 7 Solutions 
 

1. Non-parabolic conduction band. 

For “non-parabolic” conduction band of many semiconductors, ( )
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2
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The key point is that this relationship, like the Fermi-electron U-vs-k relationship, is 
spherically symmetric in k space. So  
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Solving for k3, we get ( )
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And ( ) ( )
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Note:  In the limit where α → 0, this gives the correct expression for a parabolic 

band: ( )
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2. Square lattice, free-electron energies: 
 

(a). The wavevector at the corner is longer than the wavevector at the midpoint of a side 

by the factor 2 .   Since 2U k∝  for a free electron, the energy is higher by ( )2
2 2= . 

(b). In 3D the energy is higher at a corner by ( )2
3  than at midpoint of a face. 

(c). If the band gap at the midpoint of a face is less than the kinetic energy difference 
between this point and a corner, the electrons will spill-over into the n = 2 band in 
preference to filling the corner states in the n = 1 band.  Divalent elements under these 
conditions will be metals and not insulators. 
 
3. Kinematics of free electrons for the fcc lattice. 

(a). We start with the “aliased” energy expression for the free electron, 
2 2| |
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h ,.  

For k along the [111] direction, we can write from Kittel Chap. 2, ( )2| | 1,1,1k u
a
π⎛ ⎞= ⎜ ⎟

⎝ ⎠

r
, 
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with 1
20 u< < , to stay within the 1st BZ below the Nyquist wave vector.  The reciprocal 

lattice vectors can be written as 

( ) ( ) ( )2 ˆ ˆ ˆG h k l x h k l y h k l z
a
π⎛ ⎞= − + + + − + − + +⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠

r
, where h, k, l are any integers.  

Thus ( ) ( ) ( )
22
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2

U u h k l u h k l u h k l
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π⎛ ⎞⎛ ⎞ ⎡ ⎤= + − + + + + − + − + +⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠

h . 

We now have to consider all combinations of indices h, k, l for which the term in 
brackets is smaller than ( )26 3 1 2⎡ ⎤

⎣ ⎦  = 9/2.  This is done easily in Excel by trying all 

different permutations up to, say, h = k = l = 3, and then sorting.  There are 15 resulting G 
vectors, specified by the Miller convention as G =  (000); ( )1, 1, 1− − − ; ( )1,0,0− , 

( )0, 1,0− , and ( )0,0, 1− ;  (1,0,0), (0,1,0), and (0,0,1); (1,1,1); ( )1, 1,0− − , ( )1,0, 1− − , and 

( )0, 1, 1− − , (110), (101), and (011). 
 

4. Square lattice with potential energy 
 

As in most cases of Fourier analysis, it is best to express a real sinusoid in complex 
exponential form for analytic simplicity.  The given form of the potential energy can be 
written V(x,y) = -4Vcos(2πx/a)cos(2πy/a) can be so-written (great exercise in successive 
use of Euler’s identity: ejkx = coskx + jsinkx): 

( ) ( )( ) ( )( ) ( )( ) ( )( )( )2 2 2 2, j a x y j a x y j a x y j a x yV x y V e e e eπ π π π+ − + − − −= − + + +  

This makes it clear that Fourier decomposition of  ( ) e jG r
G

G
V r V ⋅= ∑

r rr will have four Fourier 

components (assuming as always that VG=0 = 0), but they all equal -V.  In setting up the 
central equation, we note that at the corner (Nyquist) point of the square lattice the 
Fourier component of the Bloch wave function is Ck = Cπ/d,π/d  But there will be strong 
Bragg scattering at this point and hence strong excitation of the reverse traveling wave, 

Ck-G = C-π/d,-π/d  .  Hence, although there are four significant G vectors ( )2 1; 1
a
π⎛ ⎞ ± ±⎜ ⎟

⎝ ⎠
 

there are only two significant Ck components in the central equation.  Thus, in the 
notation of Prof. Brown’s notes 

11 1

1
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r rr r r

r r r  or 
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V W Cπ/a,π/a π/a
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A zero determinant of the C matrix means that 
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By defining U0 = 2 22 / 2 em dπh , the determinant becomes 
2(U -U +V)(U -U )=U - U (2U +V)+U (U +V 00 k 0 k k 0 0 0k ) =  

This is a simple quadratic equation in Uk which has the solution 
 

Uk = U0 + V/2 ± V/2 ; i.e.,  Uk = U0 (n=1) or U0 + V (n=2) 
 

So the band gap at the corner point is simply equal to V ! 
 
5. Silicon statistical mechanics 

(a) Density of states of single ellipsoid 
For ellipsoidal constant energy surface oriented along x axis we have 
 

( ) ( ) ( )2 2 2
2
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From geometry we know that an ellipsoid 
2 2 2

2 2 2
1x y z

b c
+ + =

а
 has a volume given by V 

= (4/3)πabc.   This makes us rewrite (*) as  
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where CU U U∆ ≡ − .  So a constant energy U surface defined about 

( )0 0 0 0, ,X Y Zk k k k=
r

 will have a volume given by 

( )3 22
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( ) ( )1/23 2 2 1 2 2
l t l t C

2 3 2 3n

2 m m ∆U V 2 m m U-UV 3dNg U = = =dU 3π 2 πh h . 

If we define:  ( ) ( ) ( )3 2*

2 3

2 d cV m U U
g U

π
−

≡
h ,  

then                                           ( )2 3* 2 23l t l tdm m m m m= =  
and the specific density-of-states is 
 

( ) ( )1 22

2 3

2
' l t Cm m U U

g U
π

−
=

h . 

(b) Evaluation of key statistical mechanical properties for Si:  At low temperature: 
* *

e 0 t 0 lh 0 hh 0 Gm =0.98 m , m =0.19 m , m =0.16 m , m =0.49 m , U =1.15 eV  

a) so that density-of-states effective  mass 
* 23

, 00.33d c e tm m m m⇒ = =  

In valance band ( ) ( )3 / 2 3 2

0

2 / 3* * * * 0.55,m m m m mlh hhd d v
⎡ ⎤

⇒ = + =⎢ ⎥⎣ ⎦  

 
These numbers are only valid at low temperatures.  At 300 K, data tables show 

*
d,cm 0.36≈  because band gap drops and masses rise with temperature.  Also, 

0

*
d,vm 0.81 m≈  because * *&lh hhm m  both increase too.   

 
b) effective density-of-states 

( )
3 2

2

*2 25 3 19 3, 3.21 10 3.22 104
m k Td c BMN T m cmC π

⎛ ⎞
⎜ ⎟= = × = ×
⎜ ⎟
⎝ ⎠h  @ 300 K 

( )
3 2

2

*2 25 3 19 3,1 1.83 10 1.83 104
m k Td v BN T m cmV π

⎛ ⎞
⎜ ⎟= = × = ×
⎜ ⎟
⎝ ⎠h  @ 300 K 

( ) ( ) / 21/ 2 10 31.14 10i
U k TG BT N N e cmC Vn −

= = ×   
       for UG = 1.11 eV @ 300 K 

 
At 450 K, masses change again; so does UG 

0 0

* *0.375 , 0.873 , 1.07, ,m m m m Ud c d v G→ →   eV 

 
NC(T) →  6.35x1019 cm-3 , NV(T) →   3.76x1019 cm-3 , ni(T) →  4.96x1013 cm-3 


