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NOTES 1: DEFINITION OF THE SOLID-STATE AND A QUICK REVIEW OF THERMODYNAMICS 

• Definition of a solid: 

 - Collection of atoms held together by cohesive forces in which the average position of each 

is fixed in time 

• Every solid is a physical system: 

- Internal microscopic architecture: 

 Three-dimensional assembly of atoms with variable composition and morphology 

- External macroscopic properties: 

  Mechanical, electrical, magnetic... 

• Solid-state is the science that connects the microscopic particles to the macroscopic 

properties 

- Aspects of materials science, physics, engineering  

• Relevance of solid state to physics: 

- Much simpler to analyze than liquids (because of fixed average position of atoms) and 

richer in collective phenomena than gases (because of close spacing) 

- The proving ground for many fundamental concepts and laws of physics dealing with the 

fundamental particles (e.g., electrons), “quasiparticles”, aand collective  excitations. 

• Relevance to engineering: 

- Solids are the basis for most artificial (i.e., human-made) machines and electronic systems. 

- Solids are strong, environmentally robust, and can generally be synthesized to have 

superior macroscopic properties to liquids or gases. 

 • As in all physical systems, internal energy U is the key metric in a solid and has a fixed 

value in closed systems.  

• Under influence by outside forces, U is changed it two ways: 

(1) Work energy done on or by the solid, δW ("δ" denotes small change; an “inexact” 

differential) 
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Note: in mechanics and electromechanics, work can always be associated with a change 

in “potential” energy: e.g., dW = ∫ ⋅
2

1

)( xF dx  for work done by a force F over a distance 

x2 – x1. 

(2) Heat energy that transfers into or out of the solid, δQ 

- The randomly distributed microscopic kinetic energy associated with internal modes of 

the solid.  Note: Because heat is just microscopic kinetic energy, it can ultimately be 

calculated very precisely if one knows the microscopic mechanics (classical or quantum 

mechanical) well enough 

• Thermodynamics is the accounting formalism for U: 

- Connects U, Q, & W through 1st law (conservation of energy): 

 WQU δδδ += = 0 (in any “closed” system), independent of “state” of system. 

- Describes the “state” of the system through a surprisingly small number of 

macroscopic variables, such as temperature and pressure.  (Note: originally, 

macroscopic meant measured at the human scale; now it means, averaged over very 

many atoms or molecules) 

- Gets amazingly simple and elegant for the special “state” called equilibrium – the state 

whereby the macroscopic variables are uniform throughout the solid or system and all 

of the microscopic particles and/or energy levels are equally “accessible”. 

- In equilibrium “state” there are always simple relationships between the macroscopic 

variables, the so-called “equations of state” (e.g., recall from freshman physics or 

chemistry the ideal gas law:  PV = nRT, where R is the universal gas constant and n is 

the #moles). 

• At or near the equilibrium state the work and heat changes can be expressed 

differentially through the macroscopic variables 

 

- δW can be converted to a differential form by expressing in terms of specific 

macroscopic variables such as hydrostatic pressure and volume, VPW d=δ , or 

chemical potential µ and particle number, NW dµδ = , or electric field E and 

polarization P vectors, δW = E⋅dP, or magnetic field H and magnetization M vectors, 

δW = H⋅dM. 
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- Each of the work terms occurs in “conjugate” pairs, with one of the variables being 

extensive (i.e., scales with the size of the system) and the other being intensive (i.e., does 

not scale with the size of the system).  For example, P is intensive and V is extensive.  

Some common macroscopic variables and conjugate pairs used in solid-state are listed 

in the Table I below. 

- Important point: dV, dN, dP, etc are “exact” differential quantities (recall from 

elementary calculus the difference between δX and dX ), so that 12

2

1

VVdV −=∫ .  But 

12

2

1

WWW −≠∫δ   

- But, XidYi is not necessarily an exact differential since Xi might depend on other 

macroscopic variables other than Yi . [e.g., 12

2

1

FFdVP −=⋅∫  where F is the 

antiderivative of P with respect to V, but only if P is independent of S, and therefore T] 

- It turns out that the heat can also be converted to a differential form by introducing the 

macroscopic quantity called entropy, STQ d=δ , where T is the temperature and S is 

related to the total number of microscopic "states" accessible to the solid, SdTQ =δ . 

 

 

Table I.  Conjugate pairs of variables used to describe 
energy exchange in solids 
Conjugate 
Pair 

Intensive Variable Extensive Variable Related Susceptibility 

P dV P, hydrostatic
pressure 

V, volume (1/V0)dV/dP  
(compressibility) 

µ dN µ, chemical potential N, particle number  
E dP E, electric field vector P, polarization per  

unit volume 
εij = (ε0)-1dPi/dEj 
(electric susceptibility) 

H dM H, magnetic field
strength 

M, magnetization  
per unit volume 

µij = ∂Mi/∂Hj 
(magnetic susceptibility) 

6

1
j j

j
e π

=

⋅∑  
ej, strain component πj, stress component  ij i jS e π= ∂ ∂  (compliance 

coefficients) 

T dS T, Temperature S, entropy  C = T (∂S/∂T) (heat capacity) 
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The are many specific forms of δQ that occur depending on how the fundamental particles are put 

in net motion by the external force or forces.  When the particles are a subset of the solid as a whole, 

net motion means that the particles will almost always experience friction with respect to the 

remainder of the solid, so that the microscopic kinetic energy of the remainder will be increased.   

In the case of electrical forces, the net motion is called current drift, the friction is called resistance, 

and the Joule heating has the form 

Pd = J⋅E 

where J is the current density, E is the electric field, and Pd is the power absorbed per unit volume.1  

Hence, the heat generated becomes a function of the measurement time, ∆t:2 

t t t t

d
t t V

Q P dt dV dtδ
+∆ +∆ ⎛ ⎞

= ⋅ = ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

∫ ∫ ∫ J E  

 

As expressed through the current density J , the drift is often linearly proportional to the external 

force (expressed as the electric field E) through Ohm’s law which in its most general form is simply 

J = σE.   If J and E are uniform  (as they tend to be in the ubiqutous circuit elements we know as 

resistors), then  

2
t t

t V

Q E dV dtδ σ
+∆ ⎛ ⎞

= ⋅ ⋅⎜ ⎟
⎝ ⎠

∫ ∫  

This expression is incredibly useful and pervasive in electrical engineering. 

 

Example 1.  Work and heat in electrical circuits.   

Problem: Suppose one has the elementary electrical circuit of Fig. XX  in which a battery of voltage 

VB is in series with an ideal switch, an ideal capacitor (C) and a linear resistor (R).   The capacitor 

voltage VC is initially zero and the switch is open; then at time t = 0 the switch is turned on.  What is 

the work performed ∆W done by the battery, the heat generated ∆Q, and the total energy change 

∆U in the circuit after a period t >> RC ? 

 

Solution: From the Kirchoff voltage law and at t > 0, VB + VC + VR = 0 . And the series connection 

requires IC = C(dVC/dt) = IR .  The resulting differential for VC is C dVc/dt + (Vc – VB)/R =  0, a 

linear inhomogeneous 1st-order differential equation with constant coefficients.  By inspection the 

particular soution is VC = VB, and the homogeneous solution is VC = A exp(-t/RC) where A is a 

constant.  So the complete solution that satisfies the initial condition VC (t=0) = 0 is just 

VC = VB[1-exp(-t/RC)]       (E.1) 
                                                                 
1 one of the great exercises of Maxwell’s equation of electromagnetics; see for example, F. Ulaby “Applied 
Electromagetics,” (Prentice Hall, New York, 1999), Sec. 4.7.2 
2 Incidentally, the time dependence in this case is a good example of why the topic is entitled  thermodynamics, and not thermostatics.  
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The work on the capacitor is given by the change in 

potential energy ∆UC between t = 0 and t = ∞ associated 

with electric field inside, UC = (1/2)C(VC)2.  Because for an 

ideal capacitor C is independent of voltage, dUC = CVC 

dVC is an exact differential, and thus  ∆UC = UC(t = ∞) - 

UC(t = 0), which for the solution given by E.1 becomes ∆UC = (1/2) C(VB) 2 ≡ ∆W, electrical work 

done by battery.  To get the heat, we start with the famous Joule expression for the power 

dissipated by a circuit resistor,  

Pd = δQ/δt = I2R            (E.2) 

Now in a linear resistor, R is independent of I (or V), so that (E.2) itself represents an exact 

differential in Q, dQ = I2(t)R dt.  The instantaneous current  I(t) is found  from (VB – VC)/R , which 

from (E.1) becomes 

     I(t) = (VB/R) exp(-t/RC)           (E.3) 

Hence,  2 2

0 0

( / ) ( / ) exp( 2 / ) (1/ 2)B BQ dQ dt dt V R t RC dt CV
∞ ∞

∆ = = − =∫ ∫ .  So we end up with the 

remarkable result that independent of the relative sizes of R and C, the work and heat produced by 

the battery are equal, ∆W = ∆Q.    

A great application of this example is the power dissipation in switched RC circuits, of 

which CMOS logic gates are a very important example.  In this case VB becomes the “rail” voltage, 

Vdd, CG the gate voltage, and R the average channel resistance of the MOSFETs during the 

switching cycle.  If the logic gate is switched repeatedly at frequency fS, and if fs << 1/RC, then the 

heat generated by each switching event will recur, and the total “dynamic” power dissipation will 

be  

Pdyn ≈ fs ∆Q =  (1/2) CG(Vdd)2 fS . 

This expression explains beautifully two facts about modern VLSI digital electronics: (1) that as the 

clock frequencies and associated data rate increases, the chips tend to generate more heat and 

necessarily run at higher temperature, and (2) the smart way to counteract the heating effect is by 

reduction in Vdd because of its quadratic dependence.  Counteracting the temperatures increases 

with better packaging is proving difficult since Si is already being packaged on copper-alloy heat 

spreaders, and copper has close to the maximum possible thermal conductivity possible from 

common materials (single-crystal diamond is more than a factor-of-two better, but brings obvious 

economic problems). 
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         Equivalent circuit for Example 1. 
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• The differential form for the first law for the energy change at or near equilibrium: 

∑+=
i

ii YXSTU ddd  

-  Xi → intensive parameter of ith conjugate pair; Yi → extensive variable of ith conjugate 

pair. 

- The change in energy dU is now an exact differential !. Therefore, each of the intensive 

variables can be written as a partial derivative: Xi = (∂U/∂Yi)|Yi’,S where the prime 

means all other Yis other than the none being differentiated.  [e.g., µ = (∂U/∂N)|Yi’,S ] 

- Similarly the temperature can be written as T = (∂U/∂Si)|Yi, 

• A very useful result of the differential representation: susceptibilities 

- Given the exact differential representation, very useful quantities are the susceptibilities: 

K = N(∂Yi/∂Xi) or K = M(∂Xi/∂Yi) where N and M are normalization constants to make 

K intensive or dimensionless, depending on the situation. 

- The heat term also has a very important susceptibility called the heat capacity: C = T(∂S/∂T) ≈ 

δQ/δT  .  This is very important in solid state because it usually scales with the density of 

particles or microscopic energy levels (often combined through the label “degrees of freedom”) 

in the solid.  So the higher the heat capacity, the more ways the solid can distribute kinetic 

energy at the microscopic level. 

- Heat capacity is also important because, representing the kinetic energy, it represents the 

ability of a solid to conduct out of the equilibrium state (much more on this later). 

- A listing of some important susceptibilities is given in Table I.   

-   The utility of the susceptibilities stems from the fact that solid samples and systems are 

often affected only slightly by external forces, and so the perturbed quantity (intensive 

or extensive) is related to the unperturbed quantity by a small deviation: 

( ) iTii0 XXYYY δ∗∂∂+=  

or ( ) iTiii0i XXYYYY δδ ∗∂∂==−  

• Another useful result of the differential representation: cross derivatives  

- Very useful quantities are the cross derivatives: 

J = N(∂Yi/∂Xj) or J = M(∂Xi/∂Yj) between work conjugate pairs, or  

J = N(∂Yi/∂T) or J = M(∂Xi/∂T) between a work variable and the temperature. 
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- In the case of the temperature cross-derivatives, these become very important 

quantities for solids in electronic devices and packages:  e.g., expansivity, α = (V-1) 

(∂V/∂T)|Yi’ 

- In the case of the work terms, these often become very interesting parameters for “mixed 

domain” devices in electrical engineering:  e.g., the piezoelectric strain coefficient dij = (∂ei/∂Εj) 

 

 

• Yet another useful result of the exact differential form of macroscopic variables: 

Maxwell relations  

- Given the exact differential form, there are very special relationships between cross 

derivatives resulting from elementary calculus: (Recall: when an dependent variably Z can 

be expressed in terms of two independent variables x and y by an exact differential dz = 

A(x,y)dx + B(x,y) dy, then we already know: (1) A =  (∂z/∂x)|y and B =  (∂z/∂y)|x.  But this 

leads to a second great result:  (∂A/∂y)|y =  (∂B/∂x) since the first is equivalent to 

(∂2z/∂x∂y), and the second is equal to (∂2z/∂y∂x) which are identical operations since the 

order of differentiation does not matter when the functions A and B are well behaved. 

- These special relationships become useful and insightful when applied to thermodynamic 

quantities: 

Suppose it can be expressed uniquely in  terms of T and P via an equation of state V = V(T,P).  

Then dV = (∂V/∂T) dT + (∂V/∂P)dP ≡ V(αdT + κ dP) where α is the expansivity and κ is 

the compressibility.  Now because  dV is an exact differential in or near equilibrium, we have 

the useful (Maxwell) relation  (∂2V/∂T∂P) =  (∂2V/∂P∂T) or (∂α/dP) =  (∂κ/dT) .  So if one 

knows the bahavior of one quantum  

• Deviations from the Equilibrium State: Linear Response Theory 

- The formalism to this point requires the solid or system to be at or near 

thermodynamic equilibrium; i.e., a very large number of nanostates must exist and be 

equally probable.   

- Consequence of the equilibrium state:  (1) a limited number of macroscopic variables 

completely describe the energy, and (2)  these variables are uniform throughout the 

solid.  

- Equilibrium state is rarely achieved because: (1) boundary conditions within the system 

introduce a significant spatial gradient in one or more of the macroscopic variables, 
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and (2) external forces, even when scaled to atomic level, vary too rapidly in time for 

energy to be exchanged between particles of the solid. 

- Good example of the spatial deviation from equilibrium: thermal gradient in 

practically any “dense” or high-speed electronic chip.  In active region of the device, the 

“junction” temperature TJ  will generally be much higher than the “case” temperature 

TC at the bottom of the chip at the junction with the heat spreader.   A second example 

is the (chemical)-potential gradient that occurs across any resistor under bias. 

-   Good example of the temporal deviation from equilibrium: Ohm’s law at ac 

frequencies   beyond the scattering rate of the free electrons in a metal or 

semiconductor  

⇒ AC electric field accelerates the free electrons and increases their kinetic energy 

instantaneously, but energy is not exchanged with any other particles in the solid 

before the electric field changes phase.  ⇒ the kinetic energy gained in one half of 

the cycle is lost during the other half, and there is no significant energy exchange 

when the Joule power density J ⋅E is averaged over time. 

•  Simple Solution to Non-Equilibrium Problem: Macroscopic Linear Response  

- Strong microscopic interactions ⇒ many solids in devices and systems are operated 

only under weak perturbation by the external forces.  And if strong effect does occur, it 

often occurs to only one subsystem of the solid (e.g.,  the conduction electrons in a 

semiconductor).   

- Then, the response of the solid can often be analyzed using linear response theory 

whereby the gradient of the macroscopic variable induces a generalized current density 

jX.   The proportionality constant is called the “X”ivity.  For example, the conduction 

current that flows in response to a suitably small thermal gradient is given by 

( )Tj K T z= − ∂ ∂           (Fick’s law) 

where K is called the thermal conductivity.  The diffusion current that flows in response to a 

suitably small gradient in particle number density is given by 

( )Nj D N z= − ∂ ∂  

where D is the diffusivity.  And the electrical current that flows in response to a small gradient 

in electrostatic potential Φ is  

 ( )Ej zσ σ= ∂Φ ∂ = E ,        (Ohm’s law ) 

- Macroscopic linear response becomes a cornerstone for a much broader field that will 

be fully developed in ECE215B/Materials206B called Transport Theory. 
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