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NOTES 11: Common Types of Band Structures; Semiconductors 

 
Conduction bands are the highest bands that occupy electrons under normal conditions. 

 
1) Spherical (e.g., GaAs, InP, etc.)    
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2) Spheroidal ( e.g., Si, Ge)  
 

Along some directions in 
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k space we have minima in U. 
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In general along any one of these directions, 
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e.g. Silicon is a special case of an ellipsoid of revolution in which all minima lie along six equivalent 
<100> axes of cubic Brillouin zone. 
 

• along [100]  
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• along [010]  
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• along [001]  
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NOTE:  Each of the above refers to two of six ellipsoids.  

 

               yk  
 
 
 
                       xk  
 
 
 
 

 
 
Valence bands are practically the same for all cubic semiconductors. 
 
            
             K 
                       heavy holes           
 
 
 
 

            light holes         
        split-off holes 

 
 

Holes are vacant orbitals in a band.  The holes located closest to the band edge are 
characterized by two effective masses, light and heavy. These holes originate from P3/2 atomic 
orbital.  Split-off band is another band formed at P1/2 atomic orbital. 
 

 

 

 

Recall Convention: 
P → orbital angular momentum 
3/2 → orbital + spin momentum 
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Light and heavy hole 
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Split-off Band 
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e.g.,  Silicon  29.4A −=    68.0B =    
 
   87.4C =  044.0=∆  

 
 
 

Effects of Band Structures on Density of States 
 

 
• General definition can be derived for any band structure in any crystal. 
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But this is difficult to evaluate in most cases.  So we assume in semiconductors that all bands can be 
written in quadratic form. 
 

 
• For spherical case 

 

3
3

K
3
4

2
L2)K(N π•⎟
⎠
⎞

⎜
⎝
⎛

π
•=    ←Volume of constant energy surface 

 

for   
2

3

2

*
c3

*
c

22 Um2
K

m2
KU ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⇒=  

 

  ( )
2

3

2

*
c

3

Um2
3
4

4
VUN ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ π

π
=  

 
 

• To generalize this to ellipsoid of resolution, note theorem of geometry for volumes. 
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has a volume    ( )c.b.a
3
4V π=   

 

so ellipsoid volume is  ( )( ) 3
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( ) 3
1
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c,d mmmm =   density of states effective mass 
 

e.g., Si has six ellipsoids along [100] axes of conventional cubic unit cell. 
 

 
• Fundamental rule – can only have a density of states where allowed values of U exist in  
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Kvs)K(U n  relation yielding intuitive relation.  
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This general “quadratic” form can always be diagonalized such that along some directions. 
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The most common types of upper bands are: 
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1)  Spherical (conducting band) 

 
2)  Ellipsoid of revolution (spheroidal) 

 
3) Warped sphere (valence band) 

 
 
For ellipsoid along Kx just before π/a 
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Since there are 6 equivalent ellipsoids  
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For valence band at band edge, we approximate the light hole band and heavy hole band as coincident and 
as having perfectly spherical bands. 
so     
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e.g.,  Si  0h

*
l m16.0m =   0h

*
h m49.0m =  

 
 

Note:  DoS mass in valence band is higher than DoS mass in conduction band   
            in general.   
 
 
Key point   
 
     The density of states does not depend on whether the state is occupied (electron) or not occupied 
(hole).  It is a fundamental parameter of the band structure. 
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Further effects of Band Structure and Effective Mass Theorem 
 
 

• Substitutional impurity atoms have simple analysis if they are similar in size to intrinsic 
atom, e.g., phosphorous in Silicon. 

 
 

 
 
 
 
 
 

 
 
 
  Figure 
 
 
      
     Phosphorous 15P  has one extra electron and proton over 14Si  electrostatically it can be 
considered as 1Si +  proton 1+  electron.  But the H atom is embedded in the Si lattice.  Since P 
is substitutional, it doesn’t disrupt the translational symmetry ⇒ effect of lattice on electron → 
m*.  Electrostatic field between extra proton and electron must be “dressed” by Si dielectric 
constant.   In free space, hydrogen atom problem is soluble via Schrodinger’s equation in 
spherical coordinates. 
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Each eigenvalue has an eigenfunction (at last one) 
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If we go back and “re-dress” the atom  
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Because in all common semiconductors, *m  is small and εr  is rather large, there is a significant 
reduction in nU  and increase in 0a . 

 
 
 
 
  
            
 
 
 
 
     Energy 
       Levels 

Donor        Acceptor 
(Phosphorous in Si)                        (Boron in Si) 

 
      Figure 
 
 
 
 
Example:  Donor levels in Si: 
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* m26.0m =  (conduction-band electrons)   
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 Note that the negative synergy is referenced to the conduction-band-edge, so that 

1n > decreases separation from conduction band.  This separation is thus the “binding energy” or 
equivalently, the amount of energy required to “ionize” hydrogenic donor.  Once ionized, the 
donor electron becomes a conduction-band electron and the donor atom appears like proton 
dressed by *m and εr for that semiconductor. 
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Semiconductor Band Gaps 
 
     Perhaps the most important effect of band structure on solids besides the Bloch Theorem is 
the presence of band gaps that are small enough that (thermal effects e.g., phonons) can change 
the population of electrons in the highest bands (conduction = highest;  valence = next highest) 
Band gap = separation in energy between the conduction band and valence band e.g., Si. 
 
 

 
     U 
 
 
             k 

            UUG ∆=           
a
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             Fig. 
 
 

 
      As might be guessed intuitively, the band gap is strongly dependent on the atomic spacing 

and tends to get smaller as the spacing grows. 
 
 
 Classification of Band Gaps  
  
      Band gaps are the difference in energy between the lowest point of the conduction band 

(conduction band edge) and the highest point of the valence band (valence band edge).    Band 
gaps are also classified by the size of band gap relative to kBT 300K ( )meV25≅ .  As 
temperature rises, electrons are thermally excited from the valence to the conduction  band.  
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Electrons in the conduction band and holes left in the valence band contribute to the conductivity 
of electricity. 

 
 
• ( )⇒=≤ eV25.0kT10UG  ”narrow” gap 

 
- carrier concentrations can be significant from cross-gap effects at normal device 

operating between .K450300−≈  
  

• ( )⇒≈≤≤ eV5.2kT100UkT10 G  “normal gap” 
 
- carrier concentrations from cross-gap effects are not significant between 

.K450300−≈   But carrier concentrations are very important from shallow 
donors or acceptors. 

 
• ( )⇒≥≥ eV5.2kT100UG  ”wide” gap 

        
        -  carrier concentrations from cross-gap effects are never significant.  Even carrier 

concentrations from donors and acceptors are difficult to make high. 
 

      Table  
   

 
A

a
 Semiconductor ( )k300UG  Crystal Structure         Class of Band Gap  

 

 6.45        InSb       0.17      Zinc blende         Nanow 
         InAs               0.36      Zinc blende     Nanow 

 
 5.43        Si        1.12      Diamond      Normal 

         GaAs       1.42      Zinc blende     Normal 
 
  *35.4~        SiC       3.00      Wurtzite      Wide 

          GaN       3.36      Wurtzite      Wide 
 

  
  *average along different axes 

 
 
External Effects that Change Band Gaps 

 
 
     From a device Physics standpoint, the primary effects that change band gaps are temperature 
and pressure. 
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• Temperature 
 
     We found that the atoms sit in a potential energy well that is asymmetric about  
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Generally 0r0g >>δ⇒<< for cubic materials.  The lattice expands as temperature rises,  
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e.g.,  11108.3g ×−=  for NaCl. 
 

As the lattice expands, we expect the band gap to shrink. 
 
               
    
   U ( )0UG           

        ( )300U g  
                
        300 
             
               T 
 
    
     

        Figure 
 
 

dT
dUG approximately linear around K300T = and roughly equal to K

eV10 4−  

  
Common bandgaps with temperature 
 
   

 
 

Semiconductor  Ug (300K) Ug (0K)  Crystal  Structure 
 

Si (IV)   1.12  1.17       Diamond 
 

GaAs (III – IV) 1.42  1.52       Zincblend 
 

CdS (II – VI)  2.42  2.56       Zincblend 
 

SiC (IV – IV)  3.00  3.03           Wurtzite 
 

PbS (IV – VI)  0.41  0.29            Rocksalt 
 

Note: rock salt structures break the trend. 
• Pressure 

 
Hydrostatic pressure – uniform compression (stress) from all directions will generally 
raise the gap uniformly along all directions in k space. 
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 zS  
 
              
                

 
           xS  
        

       yS  
      

 
Uniaxial pressure will shrink band gap along some directions and raise it along others. 

                                                        
           U                                                

                             ( )0sUG =  
                  xS           
 
 y                  xk                         xk                        

                                     
a
π                        

a
π  

Figure             Figure                 Figure 
   

 
     Because from Poisson’s ratio, we know that the lateral spacing must increase to 
accommodate longitudinal spacing decrease.  For uniaxial stress along the x axis, the two 
ellipsoids along [ ]100xk  and [ ]00T  will have GU  increase the four ellipsoids along y  
 
Carrier Concentrations in Equilibrium  

• Conduction band 
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• Valence band 
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     These expressions are generally true, independent of impurities or excess carriers added by 
outside effects (e.g., light).  These effects will change the chemical potential as required by 1st 
Law of Thermodynamics dNTdSdU µ−= .  In general, the integrals are non-analytic and done 
numerically or via Fermi – Integral tables.  But simplification results when µ  is not near cU or 
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For the three types of bands we have covered  
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Similar analysis shows that 
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Law of Mass Action  
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This is true independent of doping. 

 
Special case:  Intrinsic Semiconductor  
 
By definition ( ) ( ) ivc nTpTn ≡=   i.e., all electrons in the conduction band come from holes in 
valence band/one-to-one correspondence. 
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Can also solve uniquely for µ as function of T. 
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→µ     “exact middle of the band gap” 

     
 Example:  Silicon @ T = 300K 
 

  33.0m*
c,d =  ,m0  55.0m*

v,d =  ,m0  12.1UG = eV 
 
 We find 3

10

i cm
104.1n ×= far less than typical doping densities and even less than the purest 

forms of bulk Si. 
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Equilibrium Concentrations with Impurities 
 

      The addition of impurities affects the electrical properties of semiconductors.   
 
 Without impurities:    ( ) ( ) ( )TnTpTn ic == ν  
 
 With impurities:          ( ) ( ) 0nTpTn c ≠∆=− ν  

 
If we assume ,kTUc >>µ−  Boltzmann Statistics still apply. so,    

    ( ) ( ) ( )TnTpTn 2
ic =ν  

 

    ( ) ( ) nTn
nTn

c

2
i

c ∆=−  

 
   nnn 2

i
2

c ∆=− cn  or 0nnnn 2
ic

2
c =−∆−  

   
This is quadratic equation for .n c  

Solution:    2n4nnn 2
i

2
c ⎥⎦

⎤
⎢⎣
⎡ +∆±∆=  

Only + sign makes sense to preserve intrinsic limit. 
 

    ⎥⎦
⎤

⎢⎣
⎡ +∆+∆= 2

i
2

c n4nn
2
1n  

so that,     
    ic nn →  as 0n →∆  
We could also write   

    npp
n

v

2
i ∆=− ν   

    v
2

v
2

i nppn ∆=−  or  0nnpp 2
iv

2
v =−∆+  

 

   ⎥⎦
⎤

⎢⎣
⎡ +∆+∆−=

+∆±∆−
= 2

i
2

2
i

2

v n4nn
2
1

2
n4nn

p              

Again, only + sign makes sense.   
 

We can write 
⎭
⎬
⎫

⎩
⎨
⎧

v

c

p
n

 vp       ⎢⎣
⎡

⎥⎦
⎤∆±+∆= nn4n

2
1 2

i
2  

  
To first order, effect of impurities can be accounted for by a change of chemical potential. 
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    ( ) nn
nTn

c

2
i

c ∆=−  

 

  kT
U

vc
2

i

G

ePNn =   
( )

kT
U

cc

c

eNn
−µ

=  
 

     ( ) ( )
c

2
i

v

2
i

vc n
n

p
nTpTnn −=−=∆⇒  

   
( )

( )

( )

kT
U

c

kT2
UU

vc

kT
U

v

kT2
UU

vc

i
c

vc

v

vc

eN

epN

ep

epN
n
n

−µ

−−

µ−

−−

−=
∆  

                       

    
( ) ( )

kT2
2UU

c

vkT2
2UU

v

c

i

vcvc

e
N
p

e
p
N

n
n µ−+ω−+−

−=
∆   

 
define  

    
( )

kTkT2
UU

v

c ivc

ee
p
N µ−+−

≡  

so that,  

    
( )

kTkT2
UU

c

v ivc

ee
N
p µ+

≡  

 
and    

    
( ) ( )

kTkT

i

ii

ee
n
n µ−µ−µ−µ

−=
∆  

 

    ( )
kTlnsin2

n
n i

i

µ−µ=
∆  

     
( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+−
−≡µ

v

cvc
i p

N
ln

kT2
UU

kT  

    ⎟
⎠
⎞⎜

⎝
⎛−

+
=µ

v

cvc
i p

NlnkT
2
1

2
UU

 

To go further we must know the donor and acceptor ionization fraction as a function of 
temperature. 

• Simplest and most common case is where each donor and acceptor has only one level and 
contributes only one electron or hole. 
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• Also we assume always that separation between adjacent donors or acceptors is great 
enough that they are distinguishable (wave functions do not overlap). 

⇒  Apply Maxwell Boltzmann Statistics (grand canonical ensemble) 

( )

( )
∑

µ−−

µ−−

=

j

kT
NU

kT
NU

j jj

jj

e

ef  →jf  probability of occupancy of state j 

Think of donor or acceptor atom as the “system” coupled to a bath at temperature T.   

There are four possible “states” of this one possible level. 
1) No electrons in level 
2) One electron in level, spin up 
3) One electron in level, spin down 
4) Two electrons in level, one spin up and one spin down 

0U1 =   0N1 =  

ddc2 UUU ≡φ−=   1N2 =  

'
dd

'
dc3 UUU ≡φ>φ−=  2N4 =  

So the mean occupancy jN  is given by 

( )

( )

( ) ( ) ( )

( ) ( ) ( )
kT

2U
kT

U
kT

U

kT
2U

kT
U

kT
U

j

kT
NU

1

1
kT

NU

j
j '

ddd

'
ddd

jj

jj

eee1

e2ee0

e

eN
N

µ−−µ−−ϖ−−

µ−−µ−−µ−−

µ−−

µ−−

+++

+++
==

∑
∑  

A good approximation is  

( ) ( )
kT

U
kT

U d
,
d

ee
µ−−µ−−

<<  

so that, 

   
( )

( )
kT

U

kT
U

j d

d

e21

e2N µ−−

µ−−

+
≈       looks like Fermi-Dirac distribution but not quite 

For a concentration dN of donors, 
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   ( )
⎥⎦
⎤

⎢⎣
⎡ µ−+

==

kT
Uexp

2
11

N
NNn

d

d
jdd  

 A similar derivation for acceptors (binding energy aφ ) yields 

( )
⎥⎦
⎤

⎢⎣
⎡ −µ+

>=<=

kT
Uaexp1

N
NNPa

2
1

a
ja  

The balance between electrons and holes is determined by the requirement for space-charge 
neutrality. 

• occupied donor is neutral dn→  
• unoccupied (ionized) donor is positively charged dd nN −→  
• occupied acceptor is neutral Pa→  
• unoccupied (ionized) acceptor is negatively charged PaNa −→  

Total negative charges −δ≡−+= PaNn ac  

Total positive charges +δ≡−+= dd nNPv   

Space charge neutrality implies +=− or ddac nNPvPaNn −+=−+  , so that   

 

PaPvNNnn addc ++−=+  
 
 
 
 

    

                           
 
 
        

            

#  of electrons in 
conduction 

band 

# of electrons  
boundtodonors
band 

#  of  
holes in 
valence 
band

#  of  holes bound to 
acceptors 


