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NOTES 12: The Kane Model and k dot p Perturbation Theory

As we have seen, band-gaps are very common in the band structure of crystalline
materials, independent of their electrical or optical properties. In normal-gap and narrow-
gap semiconductors having a direct band gap (i.e., the minimax points occur at the same
point in k space), there is a very useful model of bandstructure first developed by E. Kane
in the late 1950s (the “golden years” of solid-state science). The Kane model is
particularly useful for the studies of narrow band semiconductor where the conduction
and valence bands are close to each other. The mutual interaction of the conduction band
and valence bands strongly distorts the band edges near k =0 so that the band nature is
non-parabolic’. For the description of the electronic and optical properties of a narrow-
band semiconductor, a multiple-bands model is a must. In the case of carrier transports in
a heterostructure where the conduction and valence bands are close to each other in

dissimilar materials, the Kane model may be applied too.

The k:p method

The Schrodinger equation for a perfect, uniform crystal is
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where V(r)is the periodic potential. m, is the free electron mass. When the Bloch

theorem is applied, v is in the explicit form as,
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where u_ (F) has the periodicity of crystal lattice. The equation for u_(F) is,
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where the index n is to label the energy band and Un(IZ) is the electron energy with

momentum K at the n™ band.
In an atom, there exists the interaction between the electron spin moment and the

orbital magnetic momentum. Hence the energy of states in a semiconductor may be
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modified by the spin-orbit coupling. The effect becomes more significant as the
semiconductor element becomes heavier (i.e. the atomic number is larger). The

Hamiltonian for the spin-orbit coupling is written as’,
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As the spin-orbit coupling is taking into account, Eq.(3) need be modified to ,
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The fifth term is very small and thus can be neglected. Here the crystal momentum 7k is

far less than the atomic momentum p . At the point k =0, the k.p equation becomes,
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where u,,(7) is the complete and orthogonal set of basis functions. It is necessary to find

the matrix representation for the Hamiltonian H in Eq.(3) or (5) as follows,
Hu - (F)=(Hy+H'+H)u (F)=U", (K)u(F) (@)
2
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in a properly chosen set of basis functions u,,(r) in the Hilbert space. u_.(r) is the linear

superstition of

Unie (F) = 8 (K)ing (F) €)

The basis functions and the symmetry of semiconductor crystal

A perfect semiconductor crystal allows symmetry transformations such as rotation,
reflection, inversion?. Under these symmetry operations, the crystal lattice space repeats
itself or remains invariant. The collections of symmetry operations consist of a group

which may be defined by axioms of multiplication. When a proper set of basis functions



ECE215A/Materials206A  Fundamentals of Solids for Electronics E.R. Brown/Winter 2008

is chosen, every symmetry operation can be represented by a matrix. The matrices obeys
the same rules of multiplication that designated for the group’s elements, thereby define a
representation. Generally a group could have as many representations as possible
depending on the choices of basis. It could be n-dimensional (n=1,2,3, etc). However,
among them, the fundamental ones are the irreducible representation. Suppose the

representation matrices are labeled asT(R) . When there is a similarity transformation, by

which all the matrices can be transformed into a quasi-diagonal form like

LR) 0 J

0 LR (10)

I'(R) :(

, then the representation is called reducible. If there is no kind of similarity
transformations existing, then the representation is irreducible. The trace of a

representation matrix T'(R) is the defined as a character . The rank of the matrix isl.

The group elements are categorized into classes. Those matrices belong to the same class
if they can be transformed into each other by similarity transformations. The characters of
matrices in one class are the same. The number of irreducible representation is equal to
the number of classes. The fundamental theorems about irreducible representations and
their characters in a detailed discussion can be found in 2.

The Hamiltonian should be invariant under all symmetry transformations. These
transformations construct a symmetry group of Hamiltonian or a Schrédinger equation
group. It is proven that (a) the eigenfunctions with the same energy level form a basis for
an irreducible representation of the Schrédinger equation group, (b) without the
accidental degeneracy (the degeneracy not caused by symmetry), an irreducible
representation of Hamiltonian is to characterize a definite energy level. The dimension of
irreducible representation is equal to the degree of degeneracy. Hence without the exact
knowledge of energy bands, the irreducible representations of group provide insights into
the degeneracy of bands and the transformation properties of the basis functions. The
theoretical analysis from group theory and experimental data indicates the bottom of
conduction band at the k =0point has the symmetry properties of atomic s functions

under the operation of T, group; the top of valence bands at the k=0 point has the
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symmetry properties of atomic p functions under the operation of tetrahedral T, group

(for the diamond structure Ge, or the zinc blende structure InSb).

The LOwdin perturbation method

For a Hamiltonian of system, assume that the eigenstates have been figured out and these
states are zeroth-order or “unperturbed” from their mutual interactions. These
eigenfunctions can be divided into two classes (A) and (B). Those arbitrary energy states
that are of interest are put in class (A). Those less important bands are put in the class
(B). Their influences on bands in class (A) are treated as perturbations. Lodwin’s

theorem® claims that the matrix elements between the j and j' states in class (A)

denoted asu . are,

A jrt g’
Uy~ =Hj +Z_U “H (11)
where the first term H, is the exact matrix element between basis functions in class (A),

while the second term describes the perturbations from the partitioned bands in class (B).

The indicesr run through the energy states in class (B).

The Luttinger-Kohn Hamiltonian

Here is only focus on the valence bands which are triply degenerate. The basis functions

atk=0,|x), |Y) and |z), are chosen to be in class (A), the rest of bands (include the
conduction band) are put in class (B). Here the momentum operators p, p, and p, are
transformed the same as the coordinatesx, y and z. Under the operations of 3c? of Ty
group® , the coordinates transform like {x —-x,y - -y,z=z}, {x > -x,y > y,z=-z} and
{x—>x,y > -y,z=-z}. Hence,,

(X3 X) = ~(X Bl X) = 0, (X[By|X) = ~(X[By| X} = 0, (X[B,|X) = ~(X[P,|X) =0, (12)
(OXJHX) = 0B X Y + (X [By | Xk + (X[ X} =0, (13)

and so on. Hence the Luttinger-Kohn Hamiltonian H* has the matrix elements,
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according to the Lédwin’s theorem. The Hamiltonian of Schrodinger equation is invariant
under all the symmetry transformations. It implies the matrix element HY and H\
should coincide itself as the result of symmetry transformation. Under the operations of
B, r)(r| B, X)=—(X|,|r){r[p.|X) , and (x|p,|r)r|p,|X)=0% It

is concluded that H, doesn’t contain any kk, term. By examining the rest operations in

P

P,

3c;:, the product obeys (X

the crystal space group T, on the interactions terms of Eq.(14)-(15), the Luttinger-Kohn

Hamiltonian must be written into #,

Lk’ +M(k, +k7) Nk k, Nk,
(H™)= Nk K, Ly +M(k,” +k,*) Nk kK, . (16)
Nk,k, Nk K, Lk, +M(k’ +k,)

where the notations are,
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The commonly used Luttinger constants are defined from theL , M and N parameters,

2

1
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The basis functions for spin-orbit coupling

For the description of valence bands, it is more convenient to describe the atomic p state

using the two good quantum numbers, orbital 1=1 and magneticm=1,0,-1. | and m are
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the eigenvalues for the two commuting operators: the squired angular momentum [
and the projected angular momentum L, as,
L)1, m)=#21(1 +D[1,m)  L,|1,m) = mA|l,m) (20)

where the eigenfunctions are the spherical harmonics which are linear superpositions of

the three spatial functionX, Y andz,
10)=]z),  [1)=F (X} YD @

For the description of conduction band, there is orbitall =0, m=0 and the eigenfunction
is [0,0)=|s) . When the spin-orbit coupling is taken into account, the conduction band is
two-fold degenerate and the valence band is six-fold degenerate. The basis function for
the conduction band is|s 1), |s |} and the basis functions for valence band are|x 1),
Y1) [z21),[x{), [y ) and |z 1), respectively. Here the spinors® for spin up and | for
spin down are multiplied. The total momentum operator is defined as J=L+§ and the
projected total momentum operatorJ, =L +§,. § is the spin operator and §, .is the spin’s
projection. The eigenfunctions for spins,

§%|s,m,)=n’s(s+D|s,m,) §,

s,m, ) = Am,

5,m,) (22)
where sassumes the value /2 and m_assume the value 1/2 and -1/2. Neither L or § is

commute with the Hamiltonian. In fact, the squired total momentum J2 and projected

total momentum J,are commute with the Hamiltonian. The eigenfunctions are derived
from,

3 j,MYy= j(j+ DR M), I i M)=mA|jM) (23)
where the possible values of quantum number of jare 3/2 and1/2. Thus one has the four-
fold degenerate valence band labeled by|3/2,3/2), |3/2,1/2), [3/2,-1/2) , |3/2,-3/2) and a
two-fold valence band defined by 1/2|-1/2), [1/2,5/2). Hence the six-fold degenerate
valence bands are split into four-fold degenerate bands T, and two-fold degenerater,
under the influences from the spin-orbit coupling. Here T, and I, are notations for the

irreducible representations of double group T, at Brillouin zone center . The energy
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splitting between 1, valence band and T, spin split-off band isA. This is a result from the
theory of double group T, and is confirmed by experimental measurements. Similarly,
the two-fold conduction band I, are denoted as1/2|,-1/2), |1/2,5/2) . The total angular

momentum states can written into the expansion of uncoupled and individual basis,
1 12

“’M>:Z Z C(,m,s,m,, j,M)|l,m)[s,m,) (24)

m=-1 mg=-1/2
where C(l,m,s,m_, j,M)are named Clebsch-Gordan (CG) coefficients in atomic physics.

With the help of the tabled CG coefficients and the proper introduction of phase, the

Bloch basis functions (the zero is dropped in the subscript for u ) are chosen to be,

u =lc,= —>—‘S T>
1 1
u, :‘C,E,—E>:‘S ¢>

3 1 2 1
usz‘ > E>— g‘Zl«>+ﬁ‘(X—lY)T>
3 3\ .1
UGZ‘V,E,—E>:|$‘(X—|Y)¢>

. 1
u7=‘ > 2> \/_‘(X+|Y)¢>+‘/§‘ZT>
1 1 1 . /1
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Figure The energy bands and the Léwdin perturbation method.



