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NOTES 12: The Kane Model and k dot p Perturbation Theory 

 
As we have seen, band-gaps are very common in the band structure of crystalline 

materials, independent of their electrical or optical properties.  In normal-gap and narrow-

gap semiconductors having a direct band gap (i.e., the minimax points occur at the same 

point in k space), there is a very useful model of bandstructure first developed by E. Kane 

in the late 1950s (the “golden years” of solid-state science).  The Kane model is 

particularly useful for the studies of narrow band semiconductor where the conduction 

and valence bands are close to each other. The mutual interaction of the conduction band 

and valence bands strongly distorts the band edges near 0=k
r

 so that the band nature is 

non-parabolic1. For the description of the electronic and optical properties of a narrow-

band semiconductor, a multiple-bands model is a must. In the case of carrier transports in 

a heterostructure where the conduction and valence bands are close to each other in 

dissimilar materials, the Kane model may be applied too.  

 

The  k·p  method 

The Schrödinger equation for a perfect, uniform crystal is 
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where )(rV r is the periodic potential. 0m  is the free electron mass. When the Bloch 

theorem is applied, 
kn
rψ  is in the explicit form as,   
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kn

r
r  is, 

                       )(
2

)()(})ˆ()(
2

{
0

22

00

2

ru
m
kkUrupk

m
rV

m
p

knnkn

rhrrrhr
rr ⎥

⎦

⎤
⎢
⎣

⎡
−=⋅++               (3) 

where the index n  is to label the energy band and )(kUn

r
 is the electron energy with 

momentum k
r

 at the nth band. 

  In an atom, there exists the interaction between the electron spin moment and the 

orbital magnetic momentum. Hence the energy of states in a semiconductor may be 
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modified by the spin-orbit coupling. The effect becomes more significant as the 

semiconductor element becomes heavier (i.e. the atomic number is larger).  The 

Hamiltonian for the spin-orbit coupling is written as1, 
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As the spin-orbit coupling is taking into account, Eq.(3) need be modified to , 
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The fifth term is very small and thus can be neglected. Here the crystal momentum k
r

h  is 

far less than the atomic momentum p
r  . At the point  0=k

r
,  the k.p equation becomes,           
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where )(0 run
r  is the complete and orthogonal set of  basis functions. It is necessary to find 

the matrix representation for the Hamiltonian H in Eq.(3) or (5) as follows, 
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 in a properly chosen set  of basis functions )(0 run
r in the Hilbert space. )(ru kn

r
r
′  is the linear 

superstition of   
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The basis functions and the symmetry of semiconductor crystal 

      A perfect semiconductor crystal allows symmetry transformations such as rotation, 

reflection, inversion2. Under these symmetry operations, the crystal lattice space repeats 

itself or remains invariant. The collections of symmetry operations consist of a group 

which may be defined by axioms of multiplication.  When a proper set of basis functions 
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is chosen, every symmetry operation can be represented by a matrix.  The matrices obeys 

the same rules of multiplication that designated for the group’s elements, thereby define a 

representation. Generally a group could have as many representations as possible 

depending on the choices of basis. It could be n-dimensional (n=1,2,3, etc). However, 

among them, the fundamental ones are the irreducible representation. Suppose the 

representation matrices are labeled as )(RΓ . When there is a similarity transformation, by 

which all the matrices can be transformed into a quasi-diagonal form like 
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, then the representation is called reducible. If there is no kind of similarity 

transformations existing, then the representation is irreducible. The trace of a 

representation matrix )(RΓ  is the defined as a character χ .  The rank of the matrix is l . 

The group elements are categorized into classes. Those matrices belong to the same class 

if they can be transformed into each other by similarity transformations. The characters of 

matrices in one class are the same. The number of irreducible representation is equal to 

the number of classes. The fundamental theorems about irreducible representations and 

their characters in a detailed discussion can be found in 2.  

The Hamiltonian should be invariant under all symmetry transformations. These 

transformations construct a symmetry group of Hamiltonian or a Schrödinger equation 

group. It is proven that (a) the eigenfunctions with the same energy level form a basis for 

an irreducible representation of the Schrödinger equation group, (b) without the 

accidental degeneracy (the degeneracy not caused by symmetry), an irreducible 

representation of Hamiltonian is to characterize a definite energy level. The dimension of 

irreducible representation is equal to the degree of degeneracy. Hence without the exact 

knowledge of energy bands, the irreducible representations of group provide insights into 

the degeneracy of bands and the transformation properties of the basis functions. The 

theoretical analysis from group theory and experimental data indicates the bottom of 

conduction band at the 0=k
r

point has the symmetry properties of atomic s functions 

under the operation of dT  group; the top of valence bands at the 0=k
r

 point has the 
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symmetry properties of atomic p functions under the operation of tetrahedral dT  group 

(for the diamond structure Ge, or the zinc blende structure InSb). 

 

                                   The Löwdin perturbation method  

For a Hamiltonian of system, assume that the eigenstates have been figured out and these 

states are zeroth-order or ”unperturbed” from their mutual interactions. These 

eigenfunctions can be divided into two classes (A) and (B).  Those arbitrary energy states 

that are of interest are put in class (A). Those less important bands are put in the class 

(B). Their influences on bands in class (A) are treated as perturbations. Lödwin’s 

theorem3 claims that the matrix elements between the j  and j ′  states in class (A) 

denoted as A
jjU ′  are,  
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where the first term jjH ′  is  the exact matrix element between basis functions in class (A), 

while the second term describes the perturbations from the partitioned bands in class (B). 

The indices r  run through the energy states in class (B). 

                                       

The Luttinger-Kohn Hamiltonian 

Here is only focus on the valence bands which are triply degenerate. The basis functions 

at 0=k
r

, X , Y  and Z , are chosen to be in class (A), the rest of bands (include the 

conduction band) are put in class (B). Here the momentum operators xp̂  yp̂   and zp̂   are 

transformed the same as the coordinates x , y  and z . Under the operations of 2
43C  of Td 

group2 ,  the coordinates transform like{ }zzyyxx =−→−→ ,, , { }zzyyxx −=→−→ ,,   and 

{ }zzyyxx −=−→→ ,, . Hence , 

      0ˆˆ =−= XpXXpX xx , 0ˆˆ =−= XpXXpX yy , 0ˆˆ =−= XpXXpX zz ,      (12) 

                  0}ˆˆˆ{
0

=++=′ zzyyxx kXpXkXpXkXpX
m

XHX h
,                  (13) 

and so on. Hence the Luttinger-Kohn Hamiltonian LKH  has the matrix elements,  
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according to the Lödwin’s theorem. The Hamiltonian of Schrödinger equation is invariant 

under all the symmetry transformations. It implies the matrix element LKH11  and  LKH12  

should coincide itself as the result of symmetry transformation. Under the operations of 
2
43C , the product obeys XprrpXXprrpX xxxx ˆˆˆˆ −=  , and 0ˆˆ =XprrpX xx

2. It 

is concluded that  LKH11  doesn’t contain any yxkk term. By examining the rest operations in 

the crystal space group dT   on the interactions terms of Eq.(14)-(15), the Luttinger-Kohn 

Hamiltonian must be written into 4,  
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where the notations are, 
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The commonly used Luttinger constants are defined from the L  , M  and N parameters,  
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                                      The basis functions for spin-orbit coupling 

For the description of valence bands, it is more convenient to describe the atomic p  state 

using the two good quantum numbers, orbital 1=l  and magnetic 1,0,1 −=m . l  and m  are 
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the eigenvalues for the two commuting operators: the squired angular momentum 2L̂    

and the projected angular momentum zL̂  as, 

                          mlllmlL ,)1(,ˆ 22 += h , mlmmlLz ,,ˆ h=                              (20) 

where the eigenfunctions are the spherical harmonics which are linear superpositions of 

the three spatial function X , Y  and Z , 

                                   z=0,1 ,        )(
2

1,1 YiX ±=± m                                 (21) 

For the description of conduction band, there is orbital 0=l , 0=m  and the eigenfunction 

is S=0,0 . When the spin-orbit coupling is taken into account, the conduction band is 

two-fold degenerate and the valence band is six-fold degenerate. The basis function for 

the conduction band is ↑S , ↓S  and the basis functions for valence band are ↑X , 

↑Y  ↑Z , ↓X , ↓Y  and ↓Z , respectively. Here the spinors↑  for spin up and ↓  for 

spin down are multiplied.  The total momentum operator is defined as sLJ ˆˆˆ +=  and the 

projected total momentum operator zz sLJ ˆˆˆ += . ŝ  is the spin operator and zŝ .is the spin’s 

projection.  The eigenfunctions for spins,  

                        ss msssmss ,)1(,ˆ 22 += h ,  sssz msmmss ,,ˆ h=                       (22) 

where s assumes the value 21  and sm assume the value 21  and 21− . Neither L̂  or ŝ  is 

commute with the Hamiltonian.  In fact, the squired total momentum  2Ĵ   and projected 

total momentum zĴ are commute with the Hamiltonian. The eigenfunctions are derived 

from, 

                         MjjjMjJ ,)1(,ˆ 22 h+= ,   MjmMjJ z ,,ˆ h=                (23) 

 where the possible values of quantum number of j are 23  and 21 . Thus one has the four-

fold degenerate valence band labeled by 23,23 , 21,23 , 21,23 −  , 23,23 −  and a 

two-fold valence band defined by  21,21 − , 21,21 . Hence the six-fold degenerate 

valence bands are split into four-fold degenerate bands 8Γ  and two-fold degenerate 7Γ  

under the influences from the spin-orbit coupling. Here 8Γ  and 7Γ  are notations for the 

irreducible representations of double group dT at Brillouin zone center Γ .  The energy 
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splitting between 8Γ  valence band and 7Γ spin split-off band is∆ . This is a result from the 

theory of double group dT   and is confirmed by experimental measurements. Similarly, 

the two-fold conduction band 6Γ  are denoted as 21,21 − , 21,21  .  The total angular 

momentum states can written into the expansion of uncoupled and individual basis,   

                             ss

smm
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= ,                     (24) 

where ),,,,,( MjmsmlC s are named Clebsch-Gordan (CG) coefficients in atomic physics.  

With the help of the tabled CG coefficients and the proper introduction of phase, the 

Bloch basis functions (the zero is dropped in the subscript for u  ) are chosen to be, 
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Figure   The energy bands and the Löwdin perturbation method. 
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