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NOTES 2: MICROSCOPIC MECHANICS AND THE COUPLING TO THERMODYNAMICS:  

STATISTICAL MECHANICS AND THE SOLID-STATE HIERARCHY 
 

• Macroscopic definition 

 -spatial extent of solid-state system 

 -external "forces" being applied 

 -important thermodynamic quantities in response to forces: 

 1) Quasi-equilibrium formulation if response of entire system is weak. 

2) Non-equilibrium formulation (transport) if response of portion of system is strong. 

 

-heat is almost always important since there are usually many ways microscopically to 

absorb and store energy, and to couple it to potential or kinetic energy. 

 

• Microscopic definition 

 -Identify particles that determine thermodynamic variables and response to external forces. 

 - Scale down forces from macroscopic to microscopic level 

 -Identify interaction between these particles and external forces, and between themselves. 

 -Determine distinguishability of particles in terms of interparticle separation d and de Broglie  

       wavelength dλ  

  dd λ>>    → dλ  distinguishiable, 
p
h

d =λ ; where h is Planck’s constant [6.626x10-34 J-s] 

   and p is the particle classical momentum. 

  dd λ<<   → dλ indistinguishiable,  k

2

u
m2

p
=  ku = kinetic energy 

 -Formulate mechanical (dynamical) description  

(1) distinguishable particles → classical mechanics (Newton's Law): F = dp/dt = 

md2r/dt2 where F is the force, p is the momentum and r is the position 

(2) indistinguishable particles → quantum mechanics (Schrödinger equation): 

ψψψ UV
m

=+∇
− 2

2

2
where ψ is the particle spatial probability amplitude (i.e., the 
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“wavefunction”), V is particle potential energy, and U is the total energy.  Solutions for 

ψ are called “eigenfunctions” or, sometimes, modes because of their wave nature. 

•  Relate microscopic to macroscopic (statistical mechanics). 

- Motivation: the number of particles in any solid system is far too large to solve mechanics 

exactly.  So focus on a judiciously chosen microscopic subsystem in which the mechanics 

(be it classical or quantum mechanical) is tractable (see sketch below).  The remainder of the 

system is called the “bath” and because of its large number of particles and modes it can be 

assigned a macroscopic temperature Tb.  Note: in the simplest case the subsystem is a single 

particle; but as we shall soon see, the subsystem can be also be a single-particle mechanical 

mode shared in common by many indistinguishable particles (the case of electrons in a 

metal).  It can also be a multi-particle mode in which the excitation of the mode is distributed 

indistinguishably over the many particles (quantized lattice waves, or phonons). 

 

Boltzman Density Function (Exponential pdf) 

 

- Independent of the subsystem, we can apply statistical reasoning to the behavior of the 

subsystem based on the fact that the “bath” provides an uncountably large number of internal 

modes or ways to exchange energy with the subsystem.  Based on this reasoning, Boltzman 

showed that the occupation of the subsystem could be described by the following probability 

density function (pdf), 

P(U) = C exp(-U/kBT) 

where U is the total energy (potential+ kinetic) of the subsystem. C is a normalization 

constant determined by the condition 

0 0

( ) 1 exp( / )BP U dU C U k T dU
∞ ∞

= = −∫ ∫  

  Evaluation of the latter integral yields C = (kBT)-1.   

 
Maxwell-Boltzman 
Model of Solid 

Subsystem (particle) 

Main system (heat bath),
Temperature T 
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The Boltzman pdf is identical to the exponential pdf of probability theory and,.as such, 

has the following special properties (to be reviewed in the HW): 

(1) The mean value of U, also called the expectation value in probability theory E{U} is 

found to be  <U> = E{U} = 1

0

( ) exp( / )B Bk T U U k T dU
∞

− −∫  = kBT 

(2)  The rms deviation of U from the mean value is found to be 

∆U = [<(U - <U>)2>] ½  = 
1/ 2

1 2

0

( ) [ ] exp( / )B Bk T U U U k T dU
∞

−⎛ ⎞
− < > −⎜ ⎟

⎝ ⎠
∫ = kBT . 

So we have the remarkable result that the root mean-square deviation equals the mean ! 

In practice Ur is always expressed in terms of the mechanical variables, be they classical or 

quantum mechanical.  

 

Intuitive Justification for Boltzmann pdf: 

Subsystem is in equilibrium with bath → low energy states favored because bath will rapidly 

absorb high energy excess.  In other words, there are more ways for high-energy states to 

“thermalize”, so they should have much lower probability of occupation. 

 

The first test of the Boltzman statistics was applied to systems (e.g., gases) in which the 

subsystem is best chosen as an individual particle, and the low concentration and weak 

interparticle forces allow the application of classical (Newtonian) mechanics.   The total 

energy is all kinetic U = (1/2) mv2 = p2/2m where v = |v| is the magnitude of the vector 

velocity vector and p = |p| is the magnitude of the vector momentum.  The pdf is now given 

by    

P(v)dv = C exp(-m|v|2/2kBT)dv 

Which is a scalar function of a vector stochastic variable, the velocity.  The normalization 

factor is now given by 
2

2 2

0 0 0

exp( / 2 ) sinBC mv k T v dvd d
π π

θ θ φ
∞

−∫ ∫ ∫  = 1 

Evaluation of this integral results in C (2πkBT/m)3/2 = 1. So the resulting pdf has the form 

P(v)dv =  (m/2πkBT)3/2 exp(-mv2/2kBT)dv 

This is, in fact, a 3-dim form of the famous Gaussian pdf of probability theory. 

 For solids it is rare that any mechanical quantity be treated as a continuous stochastic 

variable.  A more common situation is that U is a function of a discrete variable, sometimes 
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classical, sometimes quantum mechanical.  For an independent particle that is not 

mechanically coupled or quantum-mechanically correlated to any others in the system, we can 

again consider the particle itself as a subsystem (albeit, a very small one) coupled to the rest 

of the system (heat bath) through heat transfer. 

The Boltzman probability of occupancy of the subsytem energy level Ur is then  

( )TkUexpCP Brr −=  

   where  rU → total energy of subsystem in that state [i.e., pkr UUU += (kinetic & potential 

energy, and  C is the normalization constant; defined by 

( ) 1TkUexpCP Br
r

r =−= ∑∑  . or ( )∑ −
=

r
Br TkUexp

1C  

Thermodynamic averages (e.g. extensive quantities, Yi ) are taken as a mean value.  For example, 

the mean energy of the subsystem is 
( )

( )∑
∑

−

−
=

r
Br

r
Brr

TkUexp

TkUexpU
U  .  Other extensive quantities 

must be expressed in terms of the energy, or else both the Ur and Yr are expressed in terms of 

microscopic mechanical or electromagnetic quantities. 

 

( )

( )∑
∑

∑ −

−
==

r
Br

r
Brr

r
rrr TkUexp

TkUexpY
PYY  

  

 

 

 

 

 

 

-  

-  

-  

-  

-  

 



 5

Example: Discrete Boltzman density with a known energy distribution 

 

Suppose we have a particle in which the energy levels are distributed in a “ladder” such that ur = 

n u0, where n is an integer and u0 is a minimum (“ground state”) energy.  The Boltzman pdf is 

given by P(un ) = Cexp(-nu0/kBT) where C-1 = 0

0
exp( )

n B

nu
k T

∞

=

−∑  

 From elementary calculus this is an infinite “geometric” series  of terms rn     where |r| < 1, so 

that the series sums to 0

0
exp( )

n B

nu
k T

∞

=

−∑ =  
0

1 1
1 1 exp( / )Br u k T

=
− − −

   .  So the Boltzman pdf is 

P(un ) = 0[1 exp( )]exp( / )o
B

B

u nu k T
k T
−

− −  .  

The mean energy is then simply  <u> = 0 0
0

[1 exp( )] exp( / )o
B

nB

u nu nu k T
k T

∞

=

−
− −∑  

While at first appearing formidable, this sum evaluates beautifully with a trick: 

Note:   nu0 exp(-nu0/kBT) = kBT2 d/dT{exp(-nu0/kBT)} .  So by exchanging the order of 

summation and differentiation (valid for well-behaved functions), we get 

<u> = 2
0 0

0
[1 exp( / )]( ) exp( / )B B B

n

du k T k T nu k T
dT

∞

=

− − − −∑ = 

2
0

0

1[1 exp( / )]( )
1 exp( / )B B

B

du k T k T
dT u k T

− − ⋅
− −

= 0 0
0 2

0

exp( / )[1 exp( / )]
[1 exp( / )]

B
B

B

u u k Tu k T
u k T

−
− − ⋅

− −
 

 

But this simplifies to  <u> = 0 0 0

0 0

exp( / )
[1 exp( / )] exp( / ) 1

B

B B

u u k T u
u k T u k T

−
=

− − −
 

 

The factor [exp(u0/kBT) – 1]-1 is called the Planck function. We will see this again when dealing 

with quantized lattice waves, or phonons.  Note that in the “classical” limit where u0 << kBT, we 

can expand the denominator exp(u0/kBT) – 1 ≈  1 + u0/kBT – 1 = u0/kBT 

And we get <u> → kBT  - the same result as for the Boltzman continuous pdf  (as expected) ! 
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The Effect of Quantum Identity (Quantum Statistics) 

 

- It is rather clear when the nanomechanics of a particle or other subystem must be evaluated by 

quantum mechanics based on spatial distinguishability. More subtle is the fact that the 

statistical analysis depends on the quantum identity (i.e., as expressed by the spin) of the 

particles at hand. 

  (1) Spin-free (classical) particles → classical (Boltzman) pdf 

  (2) Particles with spin → Boltzman pdf  but with important constraints 

   a) half-odd integral spin (1/2, 3/2 ... ) → Fermi-Dirac distribution 

   b) integral spin (1,2....) → Bose-Einstein distribution 

-  The quantum identity is stated for Fermions by the Pauli exclusion principle: no two Fermions 

can occupy the same (quantum mechanical) space-spin state. 

- Important point: independent of quantum identity, Boltzmann statistical argument about the 

subsystem interacting with a “bath” is still valid.  The energy of each particle (or mode 

occupied by many particles) is still a good statistical descriptor.  It is how the pdf is summed 

that changes.  For particles with spin, the number of them in each state is also important 

Indistinguishable-Particle Constraints 

• We apply the Boltzman reasoning not to a single particle because that is indistinguishable.  

Instead, we apply it to the entire population of such particles, 

exp

exp

r B

r B

N

i BU k T
i

r U k T N

i Br
r i

u k T
eP

e u k T

−

−

⎛ ⎞
−⎜ ⎟

⎝ ⎠= =
⎛ ⎞

−⎜ ⎟
⎝ ⎠

∑
∑ ∑ ∑

 

where ui is the energy of the ith particle of a given spin and N is the total number of particles in 

the subsystem.  Next we note that the use of quantum mechanics and single-particle states allows 

us to index the particle states by the wavevector (or quantum number j) 

so that
N

i j j
i j

u n u→∑ ∑  

We also note that such indexing allows (requires) that the overall state of the system be 

completely specified by enumerating the number of particles nj in each quantum state 

 so that ∑∑ →
jn

N

r
 where ∑ N  means a "restricted" sum, subject to ∑ =

j
j Nn  
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exp

exp
j

j

j j B
j

r n
N

j j B
n j

n u k T
P P

n u k T

⎛ ⎞
−⎜ ⎟

⎝ ⎠→ =
⎛ ⎞

−⎜ ⎟
⎝ ⎠

∑

∑ ∑
 

1) for 1/2-odd-integral spin (Fermions): nj = 0 or 1 

2) for even-integral spin (Bosons): nj = any value up to N 

The resulting 
jnP  is more complex than that for Boltzman statistics and once summed over 

becomes a distribution function (recall from probability theory that distribution functions result 

from partial summation or integration over pdfs).    

Remarkably, certain mean values become quite simple:  for example, the number of particles 

occupying quantum states having energy uk is defined by the symbol 
ku kn N≡ , and we can 

write 

exp

exp

j

j

N
k k j j B

n j k
k

N
j j B

n j k

n g n u k T
N

n u k T

=

=

⎛ ⎞
−⎜ ⎟

⎝ ⎠=
⎛ ⎞

−⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑
 

where g is the quantum degeneracy factor, or the number of distinct quantum states having the 

same energy uk. We can pull out the particular state j=k from the inner sum to yield  

 
( )

( )

,

,

exp exp

exp exp

j j

j j

m N m
k k k k B j j B

n n j k j k
k

m N m
k k B j j B

n n j k j k

n g n u k T n u k T
N

n u k T n u k T

−

≠ ≠

−

≠ ≠

⎛ ⎞
− −⎜ ⎟

⎝ ⎠=
⎛ ⎞

− −⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑
 

where the constraint on the first sum over nk with m particles and the second sum over nj with 

mN − particles are correlated so that the total number of particles is still N. 

 Please note that these mean values can be calculated even more simply using the method 

of Lagrange multipliers, or other (Legendre-transformed) pdfs [see recommended textbooks for 

Course: “Thermal Physics” by Kroemer and Kittel, or “Statistical Mechanics” by Reif].  But we 

persist with the Boltzman formulation here to make a point – the statistical reasoning behind the 

Boltzman pdf remains correct independent of the particle identity. 
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Fermi-Dirac and Bose-Einstein Statistics 

 

 Because of Pauli exclusion of Fermions, nk =0 or 1, and we can sum over nk =0 or 1 in 

the first sum to yield 

( )

( )

1

,

1

, ,

exp exp

exp exp exp

j

j j

N
k k B j j B

n j k j k
k

N N
j j B k B j j B

n j k j k n j k j k

g u k T n u k T
N

n u k T u k T n u k T

−

≠ ≠

−

≠ ≠ ≠ ≠

⎛ ⎞
− −⎜ ⎟

⎝ ⎠=
⎛ ⎞ ⎛ ⎞

− + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑ ∑ ∑
 

Dividing numerator and denominator by the obvious common factor, we get finally, 

( ) ,

1

,

exp
1 exp

exp

j

j

k
k

N
j j B

n j k j k
k B

N
j j B

n j k j k

gN
n u k T

u k T
n u k T

≠ ≠

−

≠ ≠

=
⎛ ⎞

−⎜ ⎟
⎝ ⎠+ +
⎛ ⎞

−⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

 

Asymptotic analysis shows that for large N: 

( )
( )

( ) ( )( )

, ,

1 1

, ,

exp exp
exp

exp 1
exp exp

exp 1

j j

j j

N N
j j B j j B

n j k j k n j k j k B

BN N
j j B j j B

n j k j k n j k j k

B

n u k T n u k T
u N k T

u N k T
n u k T n u k T

U N U N k T

≠ ≠ ≠ ≠

− −

≠ ≠ ≠ ≠

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟ ⎡ ⎤−⎝ ⎠ ⎝ ⎠ ⎣ ⎦≈ ≡
⎛ ⎞ ⎛ ⎞ ⎡ ⎤− −⎣ ⎦− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤= − − −⎣ ⎦

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑  

where U is the total internal energy of N particles (a macrososcopic thermodynamic variable !) 

So from 1st law of thermodynamics, 

( ) ( ) ( ) NNUN
N
UNUNNU µδδδ +≡

∂
∂

+=+  

where µ is the chemical potential ( intensive variable), defined as the change in internal energy 

per unit change in particle number. By change of variable, 1NN −′=  and because the smallest 

1N =δ  for any particle (by definition), we get 

( ) ( ) ( ) ( ) µµ =−′−′+−′=+−′ 1NUNorU,1NU11NU . Thus we can write, 

( ) ( )( )( ) ( )TkexpTk1NUNUexp BB µ−=−−− , and  

( )[ ]TkUexp1
g

N
Bk

k
k µ−+

=  subject to the  constraint ∑ =
k

k NN  

This is the famous Fermi-Dirac function. From the derivation given here it should be clear that 

the F-D function is not a distribution function in the usual probabilistic sense. Rather, it is a 

statistical average taken over the Boltzman pdf  under the special constraints of the Pauli 



 9

exclusion principle and the requirement that the total number of particles in the system is N. And 

the final average value, KN  is the mean number of particles in all quantum states indexed by k 

having the common energy Uk. The number of distinct k states having this common Uk is the 

degeneracy factor gk. As we shall see, it is very convenient to couple the F-D function to 

quantum mechanics which (through the Schrödinger equation) naturally categorizes the possible 

quantum states according to distinct quantum states (eigenvectors) and corresponding total 

energy (eigenvalue). It is a common result that there are several different eigenvectors sharing a 

common eigenvalue, which is conventionally called the quantum state degeneracy. 

     By following a similar line of analysis to that given above but applying the 

combinatiorial reasoning for particles of zero or integral spin (bosons), we would note that nj can 

have any value from 0 to ∞, and would end up with the expression 

( )[ ]TkUexp1
g

N
Bk

k
k µ−+−

=  

     This is the famous Bose-Einstein function, again not a probability distribution function in 

the usual sense but a mean value of particles in all states having energy Uk. In the special case 

that the bosons are massless, then the chemical potential vanishes (i.e., massless particles can do 

no chemical work), and we end up with  

( )[ ]TkUexp1
g

N
Bk

k
k +−

=  

    This is a special case that applies to photons and phonons, both massless bosons. We will be 

using it for phonons extensively in this course. 
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Hierarchy of Solid-State Engineering 

  
  The combination of thermodynamics at the macroscopic level, classical or quantum 

mechanics at the microscopic level, and statistical mechanics to couple them together,  leads to a 

powerful methodology in explaining phenomena in solids and in engineering them for specific 

purposes.  The methodology can be represented by the flowchart shown below that we call the 

“hierarchy” of solid state.  The word “hierarchy” is appropriate because it tends to get followed 

rather religiously in this course and in the solid-state field as a whole, whether people realize it 

or not.   For students, confusion is often caused by the fact that solid-state analyses often 

commence somewhere inside the hierarchy, and may or may not complete the loop back to the 

macroscopic level.  In this Course, we will always try to keep track of “where we are” in this 

flow chart. 

 
 
 System Definition 

• Macroscopic forces 
• Extensive Variables 
• Boundary conditions 

Sub-System Definition 
• Scale down “forces” to microscopic 
• Identify particles most responsible for 

macroscopic effects 
• Define their quantum behavior 

- Distinguishability ( dλ ) 
  λ – deBroglie wavelength 
  d – interparticle distance 
- Identity (i.e. spin) 

Mechanics 
• Quantum/classical states
• Normal modes 
• Quantum numbers 

System Response 
• Susceptibilities 

-Cv, χ, … 
• Macroscopic transport 

coefficients, currents 

Ensemble Averages 
• Define ensemble associated with 

microscopic states 
• Couple “outside” system of temp T 
• Distribution function for ensemble 

- ( )TkUexpCP Brr −=  
  (Boltzman) 

 

Kinetic Theory 
• Driving function 
• Particle current 
• Conservation Laws 

-charge, mass, etc. 

quasi-equilibrium

  non-equilibrium

Macroscopic 
Level 

Statistical 
Level 

Microscopic 
Level 
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Example of Hierarchy: Conduction electrons in a metal 

 
• Equilibrium (electric and magnetic susceptibility) and non-equilibrium (e.g., electrical and 

thermal conductivity) properties in a metal depend strongly on the conduction electrons. 

A very important measure of the affect of the electrons on many of these properties is the heat 

capacity. 

M,P,N,VVVv Td
ud

Td
SdT

T
QC ===

δ
δ

 

• At microscopic level, we know that each atom contributes approximately one conduction 

electron and that separation of atoms is approximately A3  

A3d =⇒  

We also guess (will prove later) that the kinetic energy of typical conduction electron 
2p1eV

2KU
m

≈ =  

25104.5mU2p −×≅=⇒  

A12phd ≅=⇒ λ  

So =< dd λ  and the electrons are indistinguishable and quantum mechanics is required for 

energy states.  

• Quantum mechanics is solved most easily by treating conduction electrons as independent and 

free particles confined to solid by a "binding energy", Uo. Let's do 1D only. 
 

 
energy levels

solid extends 
from 0 to L U0 

x
 

 

Schröndinger equation  ψψψ UV
dx
d

m2 2

22

=+
−  where 

m
h

2
=  

                                         potential energy  total energy 

Inside solid 0UV −= ; so let's define 0UUU +=′  
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 Get  ψψ U
dx
d

m2 2

22

′=
−  

For boundary condition, assume U0 is large enough  that electrons can not leave the solid 

⇒ ( ) ( ) 0L0 ==ψψ  Re-writing Schrondinger, we leave 

       0Um2
dx
d

22

2

=
′

+ ψ
ψ  

Solution: ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
= xUm2sin 2ψ  

Boundary Condition  at 0x =  is satisfied trivially 

b.c. at Lx = ⇒ ( ) ( ) πππ n2,LUm2LUm2sin0 22 ==
′

⇒⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
=  

We recognize, from wave phenomena, that the quantity 2

Um2 ′
 has the units of a wave vector, 

k. 

So we define 2

Um2k
′

≡ , and B.C. at x+L⇒ πnkL = or 
L

nk π
= , ,3,2,1n =  

( )
L

n
m2
1

m2
kU

222 π
==′ , ,3,2,1n =  

Rather than indexing the energy state of the electron by the classical momentum or velocity, we 

now do it through the wave vector k or "quantum number" n 

• This becomes a general theme in solids: particles that are indistinguishable and independent 

become indexed by the wave vector (or associated quantum number) of their quantum state 

(solution to Schrödinger wave equation) 

• Particles that are distinguishable but rather strongly interacting can often be analyzed by 

transforming the interaction away with new (generalized) coordinates. The resulting particles 

are often massless, independent collective excitations that are indistinguishable, so get a 

special form of Bose Einstein statistics called photon statistics. 

 e.g. interacting particles collective excitation 

atomic cores phonons 

atomic spins magnons 
 

 • particles that are indistinguishable and strongly interacting are the most difficult to deal with 
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- in some cases we can treat them as independent particles with a modified (i.e., "dressed") mass.  

In this case, we call the independent particles quasiparticles. 

- in other cases we can find new states consisting of strongly-bound interacting particles, rather 

isolated from the rest (e.g., excitons in wide gap semiconductors, Cooper pairs in 

superconductors). 

 


