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NOTES 3: ATOMIC BONDING AND ELASTICITY THEORY 
  

Ground-State Potential Energy of Solid 

• We have introduced energy as key metric in solids and a rule to account for it during changes of a solid 

or system:  the 1st law of thermodynamics 

 !+"=
i

ii
dYXPdVTdSdU   

The rule applies to small changes in the solid relative to an unperturbed equilibrium state Uo.  We could 

write in a rough sense 
0

UUdU !=  where U is the perturbed energy of the solid.  Therefore, before 

getting into the perturbation of solids, it is helpful to calculate the magnitude of Uo, which will help in 

understanding the strength of solids as well as in gauging the size of the perturbations.  (this is similar to 

the situation in electrostatics where before finding the energy of a distribution of charges it is important 

to first define the zero energy condition; because of the Coulombic nature of the force, this is 

conveniently chosen with all charges at infinity). 

  To understand U0 and dU we need to understand the nature of the bonds that occur between 

atoms in solids at the microscopic level.  Thanks largely to the field of quantum chemistry, these bonds 

were understood to be one of three general types, or a combination thereof: (1) the ionic bond, (2) the 

covalent bond, and (3) the metallic bond.  Note that this makes no statement about the solid microscopic 

morphology – be it crystalline, amorphous, or something inbetween.  In fact, a great deal of engineering 

can be done with solids without ever knowing their morphological state. 

 

Ionic Bonding 
 

• In ionic solids the atoms are considered to be independent with only a small force between them until 

one or more electrons are tranferred between pairs.  One atom is called the anion and the other atom is 

called the cation.   This allows us to make the following assumptions, the first two founded in 

electrostatics: 

(1) There is a collection of positive and negative charged atoms or molecules with equal number of each 

(charge neutral system) 

(2) Zero of energy is defined with all atoms (or molecules) at infinity (so infinitely separated) 

(3) The ions interact through two competing forces: 

- Repulsive at close separation owing to overlap of the nuclear wave functions and inability (from  Pauli 

exclusion) of electrons and nucleons to occupy same space/spin state [Note this is the first truly 

quantum-mechanical force of several to be used for the solid-state; the strong repulsion as atoms 



 2 

approach each other has no classical analog in classical electromagnetism or gravitational 

mechanics;  when it is arises entirely  from Pauli exclusion, it is called the “exchange” 

interaction] 

- Long-range Coulomb force owing to the net charge + or - on each ion.  This must have the form 
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where r is the unit vector pointing between the two atoms, the top sign applies when q1 and q2  have the 
same polarity, and the bottom sign applies when they are opposite. 

 
• A particularly useful form for the repulsive force is ( )exp

ij
F r !" # , which corresponds to an 

electrostatic potential: ( )!"# ijR rexp $=  where λ is a constant having units of energy. 
 
• Given these potentials, the equation describing the electrostatic energy of one atomic ion in the 

presence of a neighbor is: (two body problem): ( )
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Aside: Quick review of relationship between forces and potentials 

_________________________________________________________________________________ 
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This is an implicit equation with graphical solution as follows: 
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er point determines the solution, and a solution exists only for the (bottom) + sign corresponding to 

opposite charge.  Note: there may be two solutions !  To better understand this possibility, re-write 

implicit derivative equation as !"#$
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So yes, there are two possible solutions!  Which solution is correct one?  Go back and look at φ:      
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Of the two possible solutions, 
01
r  is unstable and 

02
r is stable.  Point at r02 is stable because force is 

restorative.  That is, at 
01
rr = , or 

02
r , ( ) 0rF =  

• At !+=
01
rr ,  0F >!"= # , so that force points toward larger 

01
r increasing separation 

       !"=
01
rr ,   0F <!"= # , so that force points toward smaller 

01
r further decreasing separation 

• At !±=
02
rr , 0F

<

>!"= # , so that any deviation in r  from 
02
r gives rise to force that draws atoms 

back to stable point. 

Easier way to establish stability is through 2nd derivative. 

Suppose we have zero slope point 
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Approximate Value of parameters 

• X-ray diffraction shows that the size of many ionic molecules is 3r
0
! Å 

• Particle scattering → atomic diameter 1!  Å             → 5.0!" Å 

• So we can estimate  

 ( ) ( ) ( )

( )( )
( )eV322J107.5

1031085.84

6exp105.0106.1

r4

r
expq

17

21012

10219

2

00

02

!

!!

!

"=
""

""
#

$$
%

&
''
(

)

#
**+

,
,

-  

(The magnitude of these quantities does not change much in solids if they are ionic) 
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At stable point
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           eV0.4!"#  (comparable to known binding energy of many molecules) 

 
Covalent Bonding 

 
• Very different from Ionic bonding.  There are no ions formed…just a distortion in the electron “clouds”, 

around the atoms that leads to competing repulsive and attractive terms. 

• Overlap of wavefunctions is responsible for the bonding:  

– as in ionic bonds, there is a strong tendency for atoms to interact with other atoms in such a way as to fill 

their outer electronic shells completely ⇒ inert-gas state.  

– If the atoms are in the middle part of the periodic table, there are simply too many electrons to gain or 

lose completely. 

– So for these atoms, the electrons are commonly shared between the atoms. 

• But Pauli exclusion principle prohibits electrons from occupying the same spatial-spin wavefunction. 

⇒  There will be a repulsion between electron clouds that prevents them from getting too close.  In quantum-

mechanical terms, this is called the “exchange” interaction. 

 

Good example of covalent bonding: the hydrogen molecule: H2  

 

Wavefunction of the 2 electrons around 2 H atoms is either antisymmetric or symmetric. 

 

• Pauli exclusion principle  wavefunctions for 2 identical fermions must be antisymetric 

o Electron spin can be symmetric (parallel spin) OR anitsymmettric (opposite spin)  space part of the 

wavefunction must be opposite so that entire wavefunction is antisymmetric 
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Spatial wavfunction for distant hydrogens:  Hydrogens close to each other: 

   
 

Electron charge density is high between nuclei for symmetric net attractive force because of electrostatics 

⇒ bonding.  In other words, the symmetric combination of spatial wavefunctions creates a distortion of the 

atomic charge distributions such that the nuclei of each H atom “experiences” a slightly greater electron 

number than one (i.e., the number of protons in each nucleus).  So there is a net attractive force inward on 

each nucleus toward the overlap region.  For the hydrogen molecule, the exchange interaction thus leads to a 

minimum in the total potential energy curve as shown below.  And it has only been explained successfully 

using quantum mechanics. 

 
Directionality of covalent bond: 

Electron Domain theory: 3 dimensional distribution of the outermost electrons about a given atom and how 

electrons will pair with other electrons from bonding atoms. 

• Valence electrons bind as pairs with opposite spin – an electron domain (bonding or antibonding) bonding – 

paired electrons are shared, anti-bonding – electrons belong exclusively to a particular atom 

• Electron domains arrange themselves to be as close as possible to a central atom and also avoid other electron 

domains 

• Electron distribution – result of bonding and antibonding electron domains 

Molecular shape – result of only the bonding electron domains 

 

Example: C forms the diamond structure as a result of the tetrahedrally coordinated bonds (same for many group 

IV elements). 
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3.1.3. Metallic Bonding 
 

The third type of bond common to solids is what occurs in metals – the class of solids 

characterized by high electrical conductivity and a related mechanical property called ductility.  Similar 

to the covalent and ionic bond, in the metallic bond the atoms strive to achieve a full outer electron shell.  

But rather than transferring an electron to a neighboring atom or sharing an electron, the atoms all 

donate electrons to the solid as a whole, creating a background of electrons that are free to move about 

the solid unattached to any particular atom or group of atoms.  The number of electrons donated by each 

atom is equal to its valence (i.e., the number of electrons in its outermost partially filled shell in its 

neutral state).  Every atom in the metallic solid is “cationic” in the sense that they donate electrons and 

acquire a positive charge and, therefore, repel each other.  But they remain fixed in the solid state 

because of the collective attraction with the background of “free” electrons. 

A subtlety of metallic bonding is the fact that the atoms are not locked-in to specific locations as 

in ionic or covalent solids since the cohesion is between the atoms and the “free” electrons that are in 

constant motion.  This helps explain the natural ductility of metals – the ability to deform without 

cracking or changing physical property.  And of course ductility is one of the reasons that metals became 

the basis for tool making, machines, and other developments in the rise of human technology and the 

industrial revolution. 

 

Important Points on Atomic Bonding in Solids 

 

(1) Some of the most important solids, particularly elemental materials (e.g., diamond, S, and Ge) 

display purely covalent behavior.  But compound solids (i.e., composed of two or more elements), 

usually display a mix between ionic and covalent behavior.  Good examples are the compound 

semiconductors GaAs, InP, and their ternary and quaternary alloys.  Largely because of the 

importance of these materials in electronics and optoelectronics, metrics have been developed to 

quantify the degree of ionicity or covalency of materials.  A particularly useful metric is Phillips 

fractional ionic character , ζ ,summarized in Table 8 of Chapter 3 in Kittel: ζ = 0 being purely 

covalent and ζ = 1.0 being purely ionic. When the material has ζ around 0.5, it may display either 

ionic or covalent behavior depending on the nature of the external force.  For example, in response 

to external mechanical forces, GaAs displays a similar response as Si, largely because of its 

tetrahedral covalent bonding.  But in response to infrared radiation, GaAs can display a very strong 

optical absorption owing to the small but significant polar nature of the Ga-to-As bond, as we shall 

soon see in the coverage of optical lattice waves and phonons. 
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(2) The key common result from the ionic and covalent bonding analysis is they both result in the same 

asymmetric type of binding potential – very steep as r approaches zero, but more gradual as r goes to 

infinity.  This asymmetry leads to universal properties of solids, such as nonzero thermal expansivity 

(as we have already seen from the thermodynamic analysis).  But it also corresponds to a high 

degree of nonlinearity in the interatomic potential, which causes mixing between elastic waves once 

the atoms are put into motion (i.e., given kinetic energy associated with heat, or with acoustical 

energy). 

(3) As might be expected, the single bond energy for covalent solids is often less than the single bond 

energy in ionic solids{e.g., NaCl bond U0 ~ 4.0 eV; silicon “single” bond: U0 = 1.8 eV (see Table 7 

of Chapter 3, Kittel)}.  So why are covalent solids generally so much stronger ? 

Answer: the number of bonds per atom and their spatial orientation.  For example, through 

hybridization of the atomic wavefunctions, a single Si atom forms 4 tetrahedrally-oreinted covalent 

bonds with each nearest neighbor, ⇒ a net U0 of 7.2 eV (but be careful on the counting !).  The Si is 

essentially “locked in a cage” of four spatially opposing bonds. 

 

 
 

Elasticity Theory 
 

As we have just seen for ionic and covalent solids, the atomic binding is always characterized 

as a competition between quantum or nuclear repulsion under compressive forces, and internuclear 

(usually electrostatic) attraction under tensile (i.e., expansive) forces on the solid.  These competing 

internal forces always conspire to create a microscopic potential energy for each atom as shown 

qualitatively in the previous sections on ionic and covalent bonding.   

To get the cohesive energy of the solid, we need to sum over the binding energy of each 

atomic bond.  Conceptually, this is the reduction in potential energy in the actual solid-state 

configuration compared to having all the atoms of the solid separated to infinity.  The most accurate 

way to calculate this quantity is by knowing the exact average location of each atom, as is possible 

in a crystalline solid.  This will be carried out in detail in Notes#5 once we go over some crystal 

lattice theory. 

        Response of Solid to External Mechanical Force: Strain 

But interestingly, the U0 energy was known to be important even before the advent of the 

atomic picture, particularly in explaining the reaction of the solid dU to external mechanical and 

thermal forces.  To demonstrate this, we write the total U0 as a sum over all relative position vectors rij  
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(being careful to not count any vector twice): ( )
, ;

ij

i j i j

U U
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= " r  where the rij connects the ith and jth 

atom relative to some fixed coordinate system, or the ith and jth reference points (the viewpoint 

before the discovery of atoms).  But the rij are themselves a function of position, defined by the 

lattice type in a crystalline solid or the chosen reference points in an amorphous solid.  So it is smart 

to factorize the energy deviation in terms of: (1) an atom (or reference-point)-independent 

contribution that accounts for the universal binding behavior derived for both ionic- and covalent-

type bonds, and (2)  an atom- (or reference point)-dependent term that accounts for the distribution 

of atoms and their reaction to the external force. 
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The site-independent factor is defined by a Taylor’s series expansion in three dimensions: 
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This is an example of what is called a “quadratic form” in linear algebra.  And it has the special property 

that the potential energy function (such as the ionic and covalent forms we have inspected already) 

should be well-behaved – no singularities or no multiple values.  So the order of differentiation should 

not matter; i.e., ∂2U/(∂rm∂r n) = ∂2U/(∂rn∂r m).  So there are six independent terms (generalized spring 

constants) 
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The site-dependent contribution is defined by expanding the (Δrn)ij factors with respect to a 

cartesian coordinate system 

0 0 0
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This 3x3 matrix is, in fact the gradient of Δr – an operation that ignores the bodily motion of the solid as 

a whole, which is not interesting from a solid-state perspective.  [As shown in some books on vector 

calculus, the gradient of a vector is a 2nd rank tensor  (similar to the definition of the dielectric constant 

tensor earlier):  And a 2nd rank tensor is a matrix].   And it does not depend on location in the sample.  It 

is often called the deformation matrix with unitless elements εmn 

An even more useful quantity results from symmetrizing the deformation matrix: 
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This is called the strain matrix, and it has the special properties of being unitless and insensitive to 

externally applied torque and any resulting angular bodily motion.   More importantly from an analytic 

standpoint, like the generalized spring constants ∂2U/(∂rm∂r n), there are only six independent elements 

in the strain matrix (the deformation matrix had nine, in general). 

Through some fancy algebra (an obligatory exercise in continuum mechanics; not necessarily solid-

state engineering), it is now possible to substitute the Δrm terms back in to (*) and sum over all the ij 

atomic pairs: 
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 36 stiffness        six independent strain terms 

coefficients  

(or moduli of elasticity) 
 

Note: since the strain terms are unitless, the CMN must have units of force/unit-area (i.e., pressure) 

Convention for six terms: 
xxxx1

ee !="   yyyy2 ee !="   
zzzz3

ee !="  

zyyzyz4 ee !! +==   
zxxzxz5

ee !! +==  yxxyxy6 ee !! +==  

Important comments about elasticity theory: 

(1) The formalism to this point does not care about the microscopic morphology of the solid (i.e., 

crystalline vs amorphous).  It only cares that the material contains bonds in which the potential 

energy has the characteristic minimum we found for both ionic and covalent bonds.   

(2) The need for six independent strain terms is unique to solids.  The first three e1, e2, and e3 can be 

thought of as the usual compression (if the e’s are < 0) or tensional (if the e’s are > 0) deformations, 

just as occurs in gases or liquids. 

(3) But the last three e4, e5, and e6 are a consequence of a “shear” response.  In other words, application 

of a force along a certain direction leads to a response in an orthogonal direction.  So these are called 

the shear strain terms. 

 

        Properly Characterizing the Applied Force: Stress 

 

  With the mathematical description of strain comes a need to properly represent the external force 

on a solid.  This exercise is guided by analogy with gases and liquids – the useful mechanical and 

thermodynamic intensive variable for gases and liquids is the pressure (force/unit area).  To get a 

quantity having units of pressure, we simply need the linear transformation using the stiffness 

coefficient matrix:      
6
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And just like the strain, there are six unique stress terms in general. 
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! = " !#  in quasi-equilibrium 

Important Note from our Engineering Approach:  

(1) from our thermodynamic reasoning, the stiffness coefficients
MN
C  are just (inverse) generalized 

susceptibilities relating change in stress to change in strain.   
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(2) For all solids, the stiffness coefficients as defined above are symmetric 
NMMN
CC =  

(3) When solid has high degree of symmetry, most 
MN
C  vanish.  For example, in both an isotropic solid 

and one having cubic symmetry 
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For the isotropic solid, C11, C12 and C44 are correlated, so there are only two indepenedent 

parameters.  But for cubic solids, C11, C12 and C44 are independent parameters 

In a hexagonal System (e.g., GaN, AlN, and other important materials at UCSB !) 
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There are 5 independent coefficients in this system. 

(4) By matrix inversion get:    !
=

=
6

1N

NMNM
PSe  

S → elastic compliance coefficients (or elastic constants) with 
NMMN
SS =  

Note: In practice, the compliance matrix is usually easier to deal with than the stiffness matrix. 

(5) Clearly, the form of the C and S matrices depends strongly on the symmetry (and thus the underlying 

crystallinity as we shall soon see).  But again, the elasticity theory handles isotropic solids as well as 

it does symmetric ones, which is why it is so useful in solid-state engineering.   

(6) And it even applies to fluids (gases and liquids) as a special case: 
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where C11 ≈ 1/(3κ), κ being the compressibility from macroscopic thermodynamics 
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 Fluids support no shear strain, and therefore can apply no shear stress.  This provides even deeper 

insight into why solids are so important in engineering ! 

 

How Elasticity is Often Characterized: Young’s Modulus and Poisson’s Ratio 

 

Clearly, the (tensor) mathematics of elasticity theory is rather tedious.  But as is often the case in 

engineering, great simplification occurs through practical implementation.  Perhaps the most important 

simplification is based on the fact that practical applied macrosocopic forces are easily uniaxial (i.e., in 

one direction of space), such as from a screw.  And nature gives us a great contrast in the 

compressibility of solids and air (see 1st HW problem on copper vs air).  So the mechanical boundary 

condition on solids in air is well approximated as “free”.  A uniaxial pressure, i.e., stress, then means: 

All PM equal to zero except one, call it PN 

N
PN

N

e

P
Y =  ( )zzor  yy, xx,N !  

Y  → Young's modulus 

N
P  → tensile (elongation) means positive 

N
P  (mnemonic tool: positive means toward greater Δr) 

N
PN

M

e

e
!="  

( )
( )zzor  ,yy,xxN

N zzor  ,yy,xxM

=

!=
  

!  → Poisson's ratio (turns out less 21< , but can be < 0): Note: sign is important: defined to be 

positive for the normal solid where for eN in tension (>0), eN < 0. 

 

Constructing the Compliance Matrix for a Generic (Isotropic) Solid 

We start with a cube of material in which compressive forces are applied sequentially 

(A) Compressive forces along each facet of area A 

 

z+!z 

y
F

 

z
F

 

x
F

 

y+!y 

x+!x 
 

        The strain along any axis will have three contributions. 
            For example, along x axis: 
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So that total strain along the x axis is: 
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Following convention, we reverse all the signs for forces in tension and we already have one part 

of the compliance matrix: 

1/ / / ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

xx xx

yy yy

zz zz

e Y Y Y P

e P

e P

! !" "# $ # $ # $
% & % & % &
% & % & % &
% & % & % &

= •% & % & % &
% & % & % &
% & % & % &
% & % & % &
' ( ' ( ' (

 

 By deduction, it can be seen that if sequential forces are applied along the y and z axes, the matrix 

fill will in as follows 

1/ / / ? ? ?

/ 1/ / ? ? ?

/ / 1/ ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

xx xx

yy yy

zz zz

e Y Y Y P

e Y Y Y P

e Y Y Y P

! !

! !

! !

" "# $ # $ # $
% & % & % &" "% & % & % &
% & % & % &" "

= •% & % & % &
% & % & % &
% & % & % &
% & % & % &
' ( ' ( ' (

 

(B) Shear forces at angle to facets 
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Note: Shear results from the combination of tensional and compressional stresses acting at right 
angles to each other.  Good example: attach a cube to the ground, then pull horizontally on the 
top surface. In order that the cube not move, the ground must apply an equal and opposite 
horizontal force.  The result is that the cube is in a state of shear. 

 has two contributions:

(1) tensile stress along diagonal is applied over area 2

2d 1
         

d 21

(2) compressional stress along oppostite diagonal applied

    over area of 2

        

d

A

F Ps s

Y YA
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% &
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d 22
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d d
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But there are two opposing FS terms so that  (Δd/d)tot = 2(1 + σ) PS/Y .  We have filled in another 

entry to the compliance matrix ! 
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1/ / / ? ? ?

/ 1/ / ? ? ?

/ / 1/ ? ? ?

? ?? ? ? ? ? ?

? ?? ? ? ? ? ?

? ? ? ? ? 2(1 ) /

xx xx

yy yy

zz zz

xy xy

e PY Y Y

e PY Y Y

e PY Y Y

e PY
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! !
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% & % &% &" "
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Successive application of such “pure” shear forces in the xz and yz planes would naturally create 

identical (Δd/d) strain terms for “pure” shears Pyz and Pxz   And in normal solids, this exhausts the 

possibilities of external forces, so that the total compliance matrix for an isotropic solid is given 

by: 

 

1/ / / 0 0 0

/ 1/ / 0 0 0

/ / 1/ 0 0 0

0 0 0 2(1 ) / 0 0

0 0 0 0 2(1 ) / 0

0 0 0 0 0 2(1 ) /

xx xx

yy yy

zz zz

yz yz

xz xz

xy xy

e PY Y Y

e PY Y Y

e PY Y Y

e PY

e PY

e PY

! !

! !

! !

!

!

!

" "# $ # $# $
% & % &% &" "% & % &% &
% & % &% &" "

= •% & % &% &
+% & % &% &

% & % &% &+
% & % &% &
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 As you might expect, this relatively simple form of the compliance matrix leads to an equally 

simple form of the stiffness matrix upon inversion of the matrix.  It turns out (see HW#2 as well) 

for the isotropic solid: 

2 0 0 0

2 0 0 0

2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

xx xxL L L L

yy yyL L L

zz zzL L L

yz yzL

xz xzL

xy xyL

P e

P e

P e

P e

P e

P e

µ ! ! !

! µ ! !

! ! µ !

µ

µ

µ

+" # " #" #
$ % $ %$ %

+$ % $ %$ %
$ % $ %$ %+

= •$ % $ %$ %
$ % $ %$ %
$ % $ %$ %
$ % $ %$ %

$ %$ % $ %& '& ' & '

 

where λL and µL are the Lame constants.  So an isotropic solid has only two independent 

parameters needed to describe its elastic behavior.  A fluid has only one.  Any anisotropic solid 
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requires more than two (e.g., simplest case being solid of cubic symmetry, three parameters 

required). 

 


