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NOTES 4: MASS IN MOTION: ELASTIC WAVES 

  

Solid with Time-Varying Pressure (Sound) 
 

The previous Notes developed a powerful formalism – elasticity theory – which allows 
the mathematical description of the static response of a solid to an external force.  The 
formalism works well provided the solid returns to its original form after the external force is 
removed (Hooke’s law).  But because the atoms are bound in potential “wells” whether by 
ionic, covalent, or metallic bonds, one might expect the bonds will “oscillate” about the 
equilibrium position if the force is applied or released suddenly.  Stated in mechanical terms, 
the bond is equivalent to great extent to a mass-spring combination – a mechanical resonator.  
As in all resonators, there are two forms of energy and the oscillation entails the back-and-
forth motion relative to the equilibrium point.  This relatively simple concept is the basis for 
the entire field of solid-state acoustics. 

To get a good image of how acoustics works in solids, we start with a simple one-
dimensional model, which will also helps clarify the connection between acoustics and 
elasticity theory.  The model pertains to an ionic-bond, but an identical analysis could be 
made for a covalent bond.  Also, like the static elasticity formalism, the acoustic analysis 
does not care whether the solid is amorphous, crystalline, or something in between.  But as 
we shall see in future notes on lattice waves and phonons, the analysis gets more elegant and 
some new effects occur (e.g., “optical” lattice waves) occur when the solid is crystalline. 

 
One-Dimensional Analysis 

  
One immediate benefit of being in one dimension is that the strain reduces from a 3x3 

matrix (or 6-element column vector) to a scalar, which we call δ.  We shall evaluate a small set 
of neighboring atoms with nearly identical bonds and equilibrium bond length, R0 (again, this 
does not require a perfect crystal). 

 

R0 R0 R0 

( )!+1R 0
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equilibrium 

Static strain, ä = constant 

time varying, space-varying 

 

For static strain we had Pm = ∑Cmn en  which in 1D becomes !KF +=  (Hooke's Law) 
 
In static case, a spatially-independent force exists (i.e., δ is independent of position) 
 
But if ( )x!! =  a spatial variation of the force will exist which can be calculated simply if 
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slowly varying enough: 
 
Define: 
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according to Newton's laws, any net force must correspond to an acceleration of a 
limit of mass. 
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 (linear density)  

In HW#3 you will find general solutions: ( ) ( )xct2fxct1ff ++!=  (due to Euler) 
Where 

1
f  and 

2
f  arbitrary functions and K/ρ = c2 where c is the wave velocity 

The simplest solutions (and the only ones used in this course) are the sinusoids: 
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yields: 2
c
2
k

2
=!  as expected: the dispersion curve for the plane wave. 

static 

A constant that depends only on R0 



ECE215A/Materials206A      Fundamentals of Solids for Electronics        E.R. Brown/Winter 2008 

3 

 
Generalize to three-dimensions 

  
The generalization to the realistic case of a 3D solid is facilitated by:  
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This assumed that 

M
!  was uniform throughout solid for all M. 

When
M

! is non-uniform, we have the possibility of a net force acting along certain 
dimensions of a unit cube (see illustration below) 
For example, the net force along x direction is: 
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where the facets  Ax , Ay, and Az are defined perpendicular to the respective axes. 
But for small changes, 
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Similarly: 
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And just as in the 1D case, the nonzero F!  must create an acceleration of mass (Newton's Law) 
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At this point the easiest action is the same decomposition of the stress as in the elasticity 
formalism: into six unique terms: 
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At this point we take one of two paths: 

1. analytic: look at each term on RHS using 
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 and utilize zero CMN elements 

to eliminate many terms. 

2.  numeric: expand all 
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and compute by brute force 

 
• for this course, we follow path (1) only.  As we would need powerful (matrix-based) 

code like Matlab for path 2 
• for path (1) it's good to keep the elements of C matrix close by for reference (look at 

Kittel (50) in Chapter 3). 
 
For example, the x components in an isotropic solid or one with cubic symmetry: 
 

6
31 1 2

1 11 12 12
1

P
N

C C C C
N

Nx x x x x

!! ! ! "" " " "
#= = + +
=" " " " "

 

 



ECE215A/Materials206A      Fundamentals of Solids for Electronics        E.R. Brown/Winter 2008 

5 

6
6 6

6 44
1

P N
C CNNy y y

!!" ""
#= =
=" " "

 

  
6

5 5

5 44
1

P
N

C C
N

Nz z z

! !" " "
#= =
=" " "

 

 

4 4
6

4 44
1

P
N

C C
N

Nz z z

! !"" "
#= =
=" " "

 

 
but recall definition of strain components (for all ηN slowly varying in space) 
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Hence, the wave equation for the x component 

x
r!  becomes 
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similar analysis for 

y
r! and 

z
r! components yields 
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Note the similar form of these equations 
 
Very important observation: 
 

• each component equation couples 
x
r! , 

y
r! , and 

z
r!  through time and space derivatives.  

Thus if we look for plane-wave solutions 
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and similarly for 

y
r!  and 

z
r! .  So there are two types of plane waves: 

 
1) component of r! along propagation direction → compressional wave 
2) component of r!  perpendicular to propagation direction → shear wave 

For example: plane wave in x direction of isotropic solid or one with cubic symmetry: 
 

→  ( )
0

j k x tx
r r ex x

!"
# = #  (compressional) 

 ( )
0

j k x tx
r r ey y

!"
# = #   (shear) 

 ( )
0

j k x tx
r r ez z

!"
# = #  (shear) 

or general solution  ( ) ( )
ˆ ˆ ˆ
0 0 0

j kx t
r r x r y r z ex y z

!"
# = # + # + #  

 
Substitution into coupled wave equations yields (x component) 
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Second equation (y component)  
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Third equation (z component) 
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• note: in all common isotropic solids or ones with cubic symmetry 
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compressional branch 

(one: x oriented) 

shear branch 

(two: y oriented and z oriented) 

General trend: v(compressional)> v(shear) 

 
• note: since C coefficients measure stiffness, stiffer materials display higher sound 
velocities.  Stiffness is closely related to hardness: both reflect the curvature of 
potential energy valley in the microscopic bonds ! 

    
 
 
 
Perspective on sound velocity in solids vs gases and liquids: 
 

- velocity of sound in water 
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• So it's the hardness, or large spring constants of solids that makes sound velocity higher than in 

fluids ! 
• Higher density causes sound velocity to go down! 
 


