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The Crystalline Form of Solids 

 Up to this point we have focused on generic properties of solids through 
thermodynamics, elasticity, the atomic and particle picture, and classical and quantum 
statistical mechanics – none of which require any special microscopic morphology, or three-
dimensional form, of the solid.  We have followed roughly the same path as the historical 
development of solid-state through the 19th century.  And it was, indeed, a very productive 
century with impact made by solid state on nearly every branch of science and engineering: the 
understanding and purification of metals (particularly the “noble” metals: copper, silver and 
gold) as excellent conductors in electrical wires, circuits, motors; etc.; (2) the advancement of 
alloying to produce high stiffness (Young’s modulus) and high yield strength materials such as 
steel (94% iron, 6% carbon); and (3) the discovery of fascinating and useful cross-field effects 
such as piezoelectricity (Pierre Currie), ferroelectricity, and pyroelectricity (all to be addressed 
later in the quarter).  Most of these great developments were made with polycrystalline solids 
and remarkably most of them have stood the test of time.   
 Two developments occurred early in the 20th century that shifted the emphasis to 
crystals – solids having some degree of three-dimensional translational and rotational 
symmetry.    These special type of symmetries mean that the if one could make an observation 
of some microscopic property the level of an atom, then they would get the same measurement 
result if they were to translate inside the solid by some length scale.  This length scale, called 
the lattice constant, can and should depend on angular orientation.   So the first task of crystal 
theory is to explain the translational symmetry and then explain its relation to rotational 
symmetry.  The combination provides an elegant simplification to the microscopic mechanics 
and macroscopic analysis in many solid-state engineering problems. 
 

The Crystal Lattice 
  
 In general a crystal is a collection of atoms whose time-average location in space lie on 
a lattice.  A lattice is a mathematical construction consisting of a distribution of points in space, 
any of which can be reached from the others by a linear translation through lattice vectors.  
This general definition allows for a countless number of lattices.  But in nature, and 
mathematically, the number is reduced to a special set of fundamental, Bravais lattices, by a 
secondary requirement that the crystal appear identical after the translation is made.   There 
are thus two aspects to the definition of a Bravais lattice, one conceptual and one 
mathematical: 

(1) A Bravais lattice is an inifinte array of points with a spatial arrangement and an 
angular orientation that both appear exactly the same no matter which lattice point is 
chosen. 

(2) A Bravais lattice is the collection of vectors with respect to an arbitrary atom chosen as 
the origin for which  

R = l a1 + m a2 + n a3,  
 
where a1, a2, and a3 are any three “primitive” vectors not in the same plane and l, m, and n take 
on all integral values.  It turns out that the two definitions are equivalent. 
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Examples of common Bravais lattices and their primitive vectors  expressed in Cartesian 
coordinates: 
(1) Simple cubic   a1 = ax ; a2 = ay ; a3 = az 
(2) Face-centered cubic: 

a1 = (a/2)(y  +  z  ) ; a2 = (a/2)(z + x) ; a3 = (a/2)(x + y ) 
 

(3) Body centered cubic:  a1 = ax ;  a2 = ay  a3 = (a/2) (x + y + z) 
Or a symmetric set: a1 = (a/2)(y  +  z  –  x) ; a2 = (a/2)(z + x - y) ; a3 = (a/2)(x + y - z) 

Or other possible sets too… 
In fact there are a countless number of different primitive lattice vector... 

• Primitive cell is the geometrical volume “spanned” by the chosen primitive vectors.  When 
associated with primitive lattice vectors and translated through space, the primitive cells just 
fill all of the crystal space with no overlap and no voids.   

• The conventional unit cell reflects the space group of the crystal.  For example, all cubic 
crystals are defined by a conventional cell that is, of course larger than the primitive cell 
except for simple cubic. 

 
14 Bravais Lattices 

 
 What makes Bravais lattices so special (and few in number) is the their combination of 
translational and rotational symmetry.  In classifying the Bravais lattices (as done below), the 
first distinguishing factor is the rotational symmetry  (often expressed by the 3-dim solid object 
having the same symmetry about its “major” axis).  The second distinguishing factor relates to 
the translational symmetry. 
 

Table I.  Rotational and translational specification for 14 Bravais lattices 
Rotation Translation # Elements 
Cubic (1) Simple;  

(2) Body centered; 
(3) Face centered 

3 
9 
16 

Tetragonal (1) Simple; 
(2) Centered 

2 

Orthorhombic (1) Simple;  
(2) Base centered;  
(3) Body centered,  
(4) Face centered 

0 

Monoclinic (1) Simple;  
(2) Centered 

0 

Triclinic Triclinic 0 
Trigonal Rhombohedral 4 
Hexagonal Simple 6 

  
Many of the elemental solids crystallize in a pure Bravais lattice as listed in Table I, 

taken from Table 3 of Kittel Chapter 1 taking only those materials known to be solids at room 
temperature and known to crystallize in non-“complex” form.  The fcc is the most common by 
far followed by bcc and simple hexagonal.  We will get back to the fcc in awhile. 
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Lattice with a Basis 

 
 

 Most natural and even many artificial (i.e., human made) crystals violate the defining 
requirements of a Bravais lattice.  The solid does not appear identical as one moves from atom 
to atom either because of orientational changes (e.g., a rotation is required to get back to the 
same appearance), or because of chemical changes (two or more different atomic species make 
up the crystal).  The first “orientational” violation is displayed nicely in the examples given in 
Fig. 1 for a two-dimensional triangular (Bravais) lattice vs a the two-dim honeycomb (non-
Bravais) lattice. A good three-dim example is the diamond crystal structure behind silicon. 

The second “chemical” violation occurs in most naturally occurring crystals because 
they are compounds (i.e., materials having two or more atomic species).  And in many 
materials, both requirements are violated.  A good example is the popular “zincblende” crystal 
structure behind the popular compound semiconductors GaAs and InP.  A number of 
commonly occurring (whether natural or syntethic) non-Bravais crystal structures is given in 
Table II, not necessarily listed in order of importance. 

A remarkable fact is that the majority of these non-Bravais crystal structures have an 
embedded Bravais lattice such that the other atoms, having the same speciation or not, can be 
thought of as “satellites.”.  Then the primitive unit cell associated with each Bravais lattice site 
can be thought of as having a “basis” – the arrangement of all the atoms within the cell.  The 
entire crystal is then constructed by putting together these primitive cells contiguously as 
before.  The “repeat unit” is the primitive cell. The satellite atoms “go along for the ride”. 

 
Table II. Common and Important Non-Bravais Crystal Structures 
Crystal 
Structure 

Embedded 
Bravais  

Basis Number 
of 

Elements 
Diamond fcc Two interpenetrating fcc ¼-way along unit-

cube body diagonal 
4 

Hexagonal 
close packed 
(hcp) 

Hexagonal Two interpenetrating simple hexagonal; 
“cannonball” stacked 

22 

1

2

3

1

2
3

1

2

3

1

2

3

1

2
3

1

2
3

 
 
Fig. 1. (Left) triangular Lattice (a two-dim Bravais lattice). (Right) honeycomb Lattice (not a Bravais 
lattice).  Translating from atom 1 to atoms 2 or 3 leads to the same appearance in the triangular 
lattice, but not for the honeycomb lattice. 
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NaCl (rocksalt) fcc Two interpenetrating fcc ½-way along unit-
cube side 

NA 

CsCl Simple 
Cubic 

Two interpenetrating sc ½-way along unit-
cube body diagonal 

NA 

Zincblende fcc Same as diamond but different atomic 
species on two interpenetrating fcc’s 

NA 

Wurtzite Hexagonal Same as hcp but different atomic species on 
two interpenetrating SH 

NA 

 
Also shown in the Table is the number of elements that crystallize with the given structure, 
again collected from Table 3 of Kittel Chap. 1.  Note how common the hcp structure is, having 
22 elements known to display this form of crystallinity at room temperature !  Part of the 
reason for this, and the commonality of the fcc elemental crystals, is the energetics of bonding 
explained qualitatively in the next paragraph. 
 

Close Packing 
 

Suppose we start with the triangular two-dim lattice of Fig. 1 and stack another 
triangular layer on top.   If the second layer is stacked directly over the top, we get the simple 
hexagonal lattice of Table I.  But there is another way to stack which leaves the second-layer 
atoms closer to the atoms in the first layer.  This is the close-packed stacking, which can be 
done two possible ways as shown in Figs. 2(a) and (b).  In both cases, the atoms in the second 
layer “fall” into the depression at the center of the triangle formed by three adjacent atoms in 
the bottom layer.  It is exactly like stacking cannonballs (familiar to those students who might 
have visited a 19th century fortress), or marbles, which naturally fall into the depression in the 
layer below because of gravity.  And it would appear to be more favorable energetically for the 
atomic case too, not because of gravity but rather the covalent bonding phenomenology 
discussed earlier. 

Now when the third layer is stacked on the second, there are two more possibilities.  
The atoms of the third layer can fall in the depressions of the second directly above the first 
layer.  If the fourth layer is then directly over the second, this stacking sequence is repeated, we 
get the close-packed crystal.  But the atoms in the third layer can fall in the other possible 
depression of the second layer, which is not directly over the atoms of the first layer.   If the 
fourth layer is then placed directly over the first layer, the fifth over the second, and the sixth 
over the third, and this stacking sequence is repeated, we get the fcc structure with the stacking 
direction coinciding with the body diagonal of the conventional unit cube !    

Judging from the commonality of the fcc and hcp structures, at least for the elements of 
Tables I and II, nature favors the close-packing configurations. 

   
Polytypism 

Because of the two possible ways of close-pack stacking a two-dim triangular lattice on 
top of another two-dim triangular lattice, one can represent the relative stacking orientation of 
the layers by three letters, conventionally done as A,B, and C.  With this symbolism, an hcp 
crystal is represented by ABABAB…with “repeat unit” AB.  And an fcc is represented by 
ABCABC… with repeat unit ABC.   So by deduction, it should be possible to construct an 
infinite number of possible permutations with ever increasing repeat units; e.g., 
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ABCACBABCACB…with repeat unit ABCACB….Such permutations are called “polytypes” 
and they are not just mathematical possibilities.  Silicon carbide – one of the most important 
“wide-bandgap” semiconductors today is a hexagonal (Wurtzitic) crystal that displays over 45 
different polytype forms (although only a few are commonly used in engineering devices). 

 
Coordination number. 

Associated with all the common crystal types is another important property called the 
coordination number.  It is simply the number of nearest neighbors.  An important metric for 
all Bravais lattices is the number of nearest neighbors around any given lattice point.  A few 
values are listed below for the cubic crystal types.   The fcc is the most “crowded” lattice of all 
four with 12 nearest neighbors.  As one might expect, the coordination number is correlated to 
the mass density of these crystals, assuming the bond lengths are approximately fixed.  This 
jibes with the elements in the periodic lattice too, as exemplified by the contrast between (fcc) 
crystalline Au with ρ = 19.3 x103 KG/m3 , and (diamond) crystalline silicon with ρ = 2.3 x103 
KG/m3 

 
Cubic crystal type  Coordination Number 

fcc      12 

bcc     8 

sc        6 increasing packing efficiency 

diamond cubic    4 

 

As we shall see later in the coverage of electronic band structure, the packing density also 

correlates with electrical behavior: cubic crystals of high packing fraction tend to be 

metallic, and those with low packing fraction tend to be insulators. 
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Wigner-Seitz Primitive Cell 

 With the multiplicity of ways of choosing Bravais lattice vectors, and the associated 
shape of the primitive cells, it useful (and geometrically inspiring) to choose a cell having the 
same symmetry as the point group (rotational symmetry) of the crystal.  The most popular such 
cell is the Wigner-Seitz cell, and the recipe to construct it goes as follows: pick a lattice point 
and draw lines to all other atoms in the Bravais lattice.  Then draw perpendicular planes 
through each line at the half-way point (perpendicular bisector planes).  The smallest possible 
volume formed by all these planes is the Wigner-Seitz cell. 
 Wigner Seitz cells are difficult to draw in three dimensions.  But a good example of 
their construction procedure and the resulting symmetry is given in Fig. 3 for the two-
dimensional triangular lattice.  The construction procedure still works except that the bisecting 
objects are lines, not planes.  We start with the center atom and draw the lines to the nearest 
neighbors.  The perpendicular bisecting lines just to the nearest neighbors clearly form the 
smallest possible enclosed volume, so the Wigner-Seitz cell becomes a perfect hexagon.  And 
this reflects the “six-fold” symmetry of both the two-dim triangular lattice and the simple 
hexagonal lattice when the triangular lattices are stacked vertically on top of each other [note: a 
mistake made by some students is to think that a triangular lattice has three-fold “triangular”  
symmetry.  But this pertains to rotation about the center of the triangle, and the symmetry 
operations of Bravais lattices are always with respect to lattice points] 

(b)

(c) (d)

(a) (b)

(c) (d)

(a)(a)

 
 
Fig. 2. Top view of close-packed stacking of triangular lattices: (a), (b) two equivalent ways of 
stacking the first two layers, [first layer is black; second layer is blue]; (c) stacking the third layer 
[red] on (a) so it is directly over the first layer (hexagonal close packing, or hcp); (d) stacking the 
third [red] on (a) so it is in the other possible choice close-packing arrangement of (b) (forming fcc 
lattice along cube body diagonal). 
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Lattice Sums: Cohesive Energy of Ionic Solids 
 
Among many other things, the crystalline form of a solid makes it very easy to compute many 

physical quantities, such the cohesive energy.  We will only do this for the ionic case, 
although the covalent case is similar.  Recalling our model form of the ionic potential: 

• We must sum the pair potential ( )
00

2

r4
qrexp

πε
ρλ ±−  over all ion pairs in the solid, 

keeping track of sign differences and distance between atoms 
• First focus on a given ion and sum over all other ions.  
      Define: 
                        ijR  = distance between i and j ions 
                        RpR ijij •≡  where R is nearest neighbor separation 
                        ijp → real, positive number (not necessarily an integer !) 
• Assume nuclear repulsive potential is important only between nearest neighbors.  

Define Z = number of nearest neighbors. (coordination number) 

then ∑∑
≠≠

≡



















−+

−
=

ij
ij

ij ij0

2
ij

i Rp4
q/

r
exp φ

περ
λφ   

R4
qeZ

0

2
R

πε
α

λ ρ −≡ −  

(Note: Recall our convention for the ion polarity operator +/- : the first sign corresponds to 
having the charges in the ion pair the same; the second sign is when they are different. 
We choose the minus before the Coulomb term since we want α to be positive, and 
everything else in this term is positive.  But the overall term has to be negative to get a 
stable potential; see discussion of ionic bond earlier in the notes).    

Because of the addition of the negative sign on the Coulomb, we have to negate the +/- 

operator, so that  /
j i ijp

α
≠

− +
= ∑ →Madelung constant; for example: 1p12 =  

Wigner-Seitz
primitive cell
Wigner-Seitz
primitive cell

 
 
Fig. 3. Construction of Wigner-Seitz primitive cell from two-dimensional lattice 
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and   
R4

qeZ
0

2
R

i πε
αλφ ρ −≡ −  , which can provide a stable bonding 

length R0 where  0
dR
d

0RR

=
=

φ   . 

• To get total solid cohesive energy, we must sum over all ions 
from i = 1 to N (N → number of ions) 

∑
=

=
N

1i
i0 φφ  

But we cannot include all terms in ∑
i

because some are redundant (i.e., ijφ and jiφ correspond 

to the same pair-potential) 
To see the summing process graphically we think of i and j indices as spanning a matrix 

(square) 

j

i

NN3N2N1N

N2232221

N1131211

→



















↓

φφφφ

φφφφ
φφφφ

 

• Since we are dealing with pair potentials, the diagonal elements do not get counted.  And the 
matrix is symmetric jiij φφ = , the same pair potential  

• Thus we only need to count half of the off-diagonal elements, either upper or lower.  

Mathematically this restricted set is given by ∑∑
= ≠

N

1i

N

ij2
1 or 1

2

N N

j i j≠
∑∑  

But we already know 
R4

qeZ
0

2
R

i
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ij πε
α

λφφ ρ −≡= −

≠
∑  
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== ≠
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N

1i
i

N
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N
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ij 2

1
2
1 φφφ  









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R4
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2
N

0

2
R
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α
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As in pair potential analysis, we know this can have two values of R that result in 0
dR
d

0RR

=
=

φ  

 ( )
2 2

02 2
0 0 0

0 exp
2 4 4

Rd N Z q qe Z R
dR R R

ρφ λ α αλ ρ
ρ πε

ρ
πε

− −
= + = → = 

 
 

and ( ) 







−==≡ 1

RR4
q

2
NRR

000

2

00
ρ

πε
α

φφ , →0R stable nearest neighbor separation 

The elegance of the lattice summing technique is that the resulting Madelung constant has the 
same value for every solid of the given (non-Bravais) crystal structure.  For example, 
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 Crystal Structure 
 

Zincblende 
 

Sodium Chloride 

α 
 

1.6381 
 

1.74756 
 

and this is one of the few times that 5 or 6 significant figures makes sense in engineering.  It is 
a reflection of just how precise an ideal crystal lattice is. 

And the nuclear repulsive parameters, λ and ρ, depend only on the atoms of the ion 
pair.  For example Potassium and Chlorine, K and Cl, will have approximately the same λ and 
ρ for all crystal structures that KCl occurs in.  But α will change between the structures (as will 
Z).  So R0 and φ0 will change too.  Once of the exercises in the HW addresses these facts.  
Note: to find R0 one must do stability (derivative) analysis (or just pick the larger of two R0s). 

 
 

The Reciprocal Lattice: A Logical Consequence of Fourier’s Theorem  
 

 Obviously if a solid is a perfect crystal, then many fundamental physical properties, 
such as the mass density and the total electron probability density, will have the same 
translational symmetry as the Bravais lattice.  Perhaps less obvious is that the interaction of the 
crystal with external forces – the primary theme of the course – will also reflect the symmetry.  
In other words, the crystal properties become periodic.  From one of the most powerful  
theorems in applied mathematics, we expect periodic functions to be reprsentable by a Fourier 
series.   
As a reminder Fouriers theorem states that for a bounded function f(x) that is also periodic 
such that f(x) = f(x + L), then one can write: 
 

0 0
1 1

( ) { exp[ 2 / ] exp[ 2 / ]} { exp[ ] exp[ ]}n n n x n x
n n

f x a a j n x L b j n x L a a jk x b jk xπ π
∞ ∞

= =

= + + − ≡ + + −∑ ∑
 where kx =2πn/L is the circular spatial frequency 

We can generalize this to a function periodic on the lattice by the  

0
1

( ) { exp[ ] exp[ ]}n n
n

f r a a jK r b jK r
∞

=

= + ⋅ + − ⋅∑  

We can now apply the periodic requirement that ( ) ( )f r f r R= +  where R  is any Bravais 

lattice vector.  This leads to the results 

0
1

( ) { exp[ ( )] exp[ ( )]}n n
n

f r a a jK r R b jK r R
∞

=

= + ⋅ + + − ⋅ +∑  

 

which can be true, in general, if and only if 1jK R jK Re e⋅ − ⋅= =  
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This, in turn requires 

2K R nπ⋅ =    , n = integer  (*) 

The K s are the circular spatial frequencies of the Fourier series, better known (in solid-state 

physics) as the reciprocal lattice vectors. 

Equation (*) becomes the definitive expression for constructing the reciprocal lattice 

vectors.  Once obtained, they span the “Fourier space” of the given Bravais lattice, and because 

they are necessarily discrete, they too form a lattice – the “reciprocal lattice.”   It is important 

up front to realize that the K s must still ultimately be represented in the same Cartesian space 

as the Rs .  They are just a different “basis set.” 

Perhaps the easiest way to construct the K s easily is to anticipate the fact that one can 

write 1 1 2 2 3 3K m b m b m b= + +  and use 1 1 2 2 3 3R n a n a n a= + +  to create a very simple inner 

product.  We simply choose, 1b ⊥  to 2a  and 3a  such that 

1b R⋅ = integer 2π×  

So that we get the well-known relations, 

( )
2 3

1
1 2 3

2 a ab
a a a

π
 ×

=  ⋅ × 
 

( )
3 1

2
2 3 1

2 a ab
a a a

π
 ×

=  × 
 

( )
1 2

3
3 1 2

2 a ab
a a a

π
 ×

=  × 
 

We can show the “primitive” reciprocal lattice vectors – the  'b s  - have the correct properties.  

It’s obvious 2i j ija b πδ⋅ =   where δij = 1 if i = j ; = 0 if i ≠ j.  It can be shown (a mathematical 

proof) that there is no other 'K s  that satisfy 1jK Re ⋅ =  or 1jK Re− ⋅ =  except linear combinations 

of the 'K s .  If there was one, the coefficients would have to be non-integral ⇒  an R could be 

found such that 1jK Re ⋅ ≠  .  

As an example we consider the fcc “direct lattice for which we have the symmetrical 

set of primitive lattice vectors  
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( )1 ˆ ˆ2
aa y z= +  

( )2 ˆˆ2
aa z x= +  

( )3 ˆ ˆ2
aa y x= +  

Substitution into the above formula leads to 

( ) ( ) [ ]
2

1 3

2 2ˆ ˆ ˆ ˆ ˆˆ ˆ
/ 4 4

ab z x y x x y z
a a

π π 
= × + + + = − + +    

 
 

                                     

  volume of  primitive cell 

Continuing, we find 

[ ]2
2 ˆ ˆ ˆb x y z
a
π

= − +  

[ ]3
2 ˆ ˆ ˆb x y z
a
π

= + −  

And these are just 4π/a2 times the “symmetrical” set of primitive lattice vectors for the bcc 

lattice defined on p. 2 of these notes.  The “Fourier space” of a an fcc lattice is bcc lattice ! 

 

The Wigner-Seitz Cell of the Reciprocal Lattice: The Brillouin Zone  
 

As in the direct crystal space, we can define a three dimensional “primitive” cell with 

respect to a chosen point by the same (Wigner-Seitz) perpendicular bisector recipe as for 

the direct lattice.  And as in the direct lattice, if repeated through the solid by reciprocal 

lattice vectors, it will just fill all of reciprocal space with no voids or overlaps.  For 

historical reasons, this “primitive” cell of reciprocal space is called the 1st Brillouin zone.  

 

Directions in Space and Lattice Planes 

 
Any three non-co-linear points define a plane → ∞  # points in plane.  It’s not so obvious 

that for any plane, there is a family of planes parallel to the first one that contains points. 

Definition: a “family” of planes is formed by a given plane and all parallel planes which 

contain the points of a Bravais Lattice 
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Theorem:  For every “family” of planes in real space, there exists a K  vector in reciprocal 

space such that K  is perpendicular to the planes.  The smallest such K  vector has length 

2
d
π  where d is the spatial separation between planes.   

Conversely, for every reciprocal lattice vector there is a corresponding plane in direct 

space.  So if we write, 1 1 2 2 3 3K m b m b m b= + +   , we can conveniently use the coefficients m1, 

m2, and m3 to uniquely represent the planes.  The convention in crystallography is to use 

the following bracket notation  

( m1 , m2 , m3 ) → plane 

[m1 , m2 , m3 ] → family of planes 

 We will come back and develop more concepts and mathematics in reciprocal lattice 

space as the need arises: particularly in developing the interaction between mechanical 

waves and the lattice  (phonons, when quantized), and the interaction between electron (de-

Broglie) waves and the lattice (energy band structure). 


