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NOTES 7: Energy of Lattice Waves and their Quantization (Phonons) 

 
Classical Analysis 
 

So far we have addressed only the mechanical behavior of lattice waves – the description of 

the wave phenomenology consistent with Newton’s law and the kinematics of the crystal lattice.   

This led to two different types of plane waves, one (the longitudinal) polarized along the direction of 

wave propagation, and the other (transverse) polarized in one of the lateral directions in the 

perpendicular plane.  Now we take the analysis one step further to understand the wave energy.  In 

addition to being essential to the statistical mechanics, the energy also leads to a quantum 

mechanical description of lattice waves and the introduction of the particle dual of lattice waves – 

the phonon.   

We start with a monatomic linear lattice of atomic mass m, spacing a, and nearest neighbor 

interaction (spring constant) C.  We consider the longitudinal wave ( )cosr A t ska
s

!" = # .  The 

total energy of the wave is the energy of each atom summed over all atoms.  From mechanics we 

know that the instantaneous energy of a mass-spring system has a kinetic energy term associated 

with each mass and a potential energy term associated with each spring.  The kinetic energy depends 

only on the velocity of the individual masses in motion.  The potential term depends only on the 

force constant and the displacement of the atoms from their equilibrium positions.  The kinetic 

energy associated with the sth mass is 
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The potential energy associated with the sth spring (assuming nearest neighbors only) 
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By summing over all atoms we get the total energy: 
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For longitudinal wave ( )cosr A t ska
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The last term has the form ( )
2

cos cos ,with t ska ka! " ! ! # "$ %& & = & =' ( .  So we can use the 

trigonometric identity 
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To get the average, we integrate over the period of wave, τ  
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for linear monatomic lattice, we have ( )
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Quantization of Lattice Waves (Phonons) 

Fourier representation of total lattice energy 

Our coverage of lattice waves assumed implicitly that we could identify the atomic 

nuclei with sufficient accuracy to distinguish one nucleus from its neighbors.  Hence we 

applied the classical mechanics (Newton’s law) and derived the results of Chapter 2 without 

ever seeing Planck’s constant.  Remarkably, this is an acceptable approach with the atomic 

nuclei because, by the very definition of a solid, they maintain a fixed average position with 

time that is much better defined in space than the internuclear separation. 

The same statements cannot be made about the amplitude of the lattice waves, Δrs.   

Measurements of this amplitude cannot be made with arbitrary accuracy because of the 

limitations imposed by quantum mechanics.  To account for this fact, we seek to quantize the 

amplitudes according to the method of quantum mechanics.  The first step is to write out the 

total particle energy in terms of the deviations of each lattice atom from its equilibrium 

position: 

d r 2 2s( ) ( r r )
tot s s 1dt

1 1
U m C

s s2 2

!
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"
= +# #    (1) 

The standard quantum-mechanical (Hamiltonian) approach is in terms of the canonical 

pair of variables, the particle momentum ps and position Δrs.  We recognize that 

dÄrsm = mv = ps s
dt

.  And in crystals we have the wave translation relation: jka
r r ess 1

! !
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=
"

, 

so that 
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 We have already seen that one general solution to the lattice wave equation is the 

plane wave of wave vector k and associated circular frequency ω, 

s

j( ksa t )
r Ae
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=  

By linear superposition, the sum over Δrs values of all possible k and ω values should also be 

a good solution and has the form of a discrete Fourier series, 

k

1 jksa
r R es

KN
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k
R !complex amplitude 

The normalization 1/ N  leads to an inverse Fourier series k

1 jksa
R r es

sN
!
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We expect that because p is 
dt

rd
s

!
" , it can also be represented Fourier series but with a phase 

shift.   It turns out: k
k

1 jksa
P P es

N

!
= " and the inverse Fourier series is just 

k

1 jksa
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sN
= !  .  Substituting these two Fourier representations into Utot , we get: 
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where all quadratic terms, in general, require two independent wave vectors k and k’ in the 

summation.  While appearing quite formidable, there is a great simplification for any a,   
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where δ is the Kronecker delta function defined as δm,n = 1 if m = n;  δm,n ≠ 0 in m ≠ n . 
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Substitution into (3) yields  k k k k
k k

( 2 2 cos ka )
1 C

U P P R Rtot
2M 2

! ! != +" "  

But we know for acoustical lattice waves: ( 1 cos ka )
2C2

k m
! "= , which leads to 

1 m 2
U P P R Rtot k k k k k

k k2m 2

!= +" "# #     (4) 

We write the subscript k on ω to remind ourselves of the dispersion relation connecting them, i.e., 

there is one-to-one mapping between ω and k that remains valid (and very useful) no matter how we 

analyze the lattice waves and their energy. 

 Two final simplifying steps follow from the fact that Δrs and ps must be real quantities: 

k

1 jksa *
R r e Rs ksN
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"
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Substitution into (4) then yields 

 Uk
k

1 m2 2 2
U P R         tot k k k

k k2m 2

! "#= +" "    (5) 

where the last step is to emphasize that the total energy of the lattice atoms has been reduced to a 

summation over lattice wave vectors and Fourier amplitudes ! 

 

Quantum mechanical transformation 

      Up to this point the analysis is entirely classical.  Essentially what we have done is derive a 

new expression for the total energy of the lattice in which the atoms are decoupled entirely.  In other 

words, the energy is now written as a sum over independent lattice-wave modes, each specified by k 

(and ω).  While at first appearing to be purely mathematical, it justifies the next step of the analysis, 

which is to transform (5) according to the rules of quantum mechanics but treating the mode k as the 
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“particle”, the Fourier amplitude Pk as its momentum, and the Fourier amplitude Rk as its position.  

In the “position” representation of quantum mechanics, Rk becomes the position operator, the 

momentum is given by P i
k

R
k

!
" #

!
h  and Uk becomes the energy eigenvalue for mode k.  This is a 

very important procedure called Second Quantization.  It is the same as First Quantization you learn 

in an introductory quantum mechanics class except that now the momentum and position are Fourier 

amplitudes.  Essentially, it is quantum mechanics in Fourier space, and is a pervasive technique in 

many-body physics and quantum-field theory. 

      The Second Quantization on (5) and operation on the total (lattice) wave function ψ to yield 

the lattice Schrodinger equation, 
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This represents a sum of independent 2nd order differential equations, each having the form, 
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But this is identical in form to the harmonic oscillator Schrodinger equation  
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 Define: 2
m , 2mUk k! "# == h h , and we get  

k

k
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Now define dimensionless variable W. 
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This is a general 2nd order equation of ODE theory.  

It has the solution ( ) ( )
2W 2
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Now we can go back and write: 

k k
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2
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Where n # phonons!  
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n 0,1,2,3 , k to
a a

! !"
= =L  

k
! "  phonon mode, wave vector k, frequency ωk and state occupancy n or n # phonons!  

What does this mean? 

• We started by solving for arbitrary excitation of monatomic lattice as a sum over all atoms. 

• End up with a sum over all possible frequencies ( consistent with dispersion relation) 

weighted by 1
( n )

2
+ h  

• The integer n has determined magnitude of r!  

Note there are two ks for each ωk (left-going and right going waves):  
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In a crystal of volume V, this becomes: 
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Now in any time-averaged harmonic oscillator: 
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The smallest possible dilatation is: 
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Numerical example: 

Take Ge, optical branch 4C2
@ k 0

m
! = =  

11 2
C C 1.29 10 N m

11
= ! "  (Kittel Chapter 3, Table 12) 

12
9 10 Hz! " #   3 3

5.3 10 kg m! " # ; 

take V = 1 cm3 = 10-6 m3 , so 

22
r 1.7 10 m
0,min

! = "  

Better example: Δr0|min @ smallest k 

kmin = π/L.  Let L = 1cm or kmin = 314 m-1 

 Take Aluminum:    e 3
2.77 10 Kg m! = "  

kv
smin

=!  12
C

v 4681m ss
!

= =  

So,   6
1.47 10 / s

min
! = "    compressional wave 

h -19
Är = 2 = 2.28? 10 m
0 min 2ñVùmin

 (another small number) 


