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NOTES 9: FERMI-SOMMERFELD MODEL OF FREE ELECTRONS  

Arguably the most important phenomenon in all of electronics is the natural 
presence of “free” electrons in solids, particularly metals.  “Free” means that they are not 
bound to any particular atom or defect but, instead, move about the entire solid under the 
random (Brownian) motion of thermal equilibrium, and the deterministic motion under 
any applied electric or magnetic fields.  This mode was put forth shortly after the 
discovery of the electron in early part of the 20th century to explain the amazing variation 
in electrical properties between common materials, particularly between dielectrics and 
metals.  It was believed, but not proven rigorously till later using energy band principles, 
that dielectrics have no “free” electrons but metals have very many.  In fact, great 
progress was made in explaining certain metallic properties, such as the electrical 
conductivity of solids, simply by assuming that there was an integral number of “free” 
electrons per atom in the solid.  The mechanical response of the electrons to an electric 
field could then be described similar to the response in vacuum, but with the addition of a 
strong scattering mechanism.  This so-called Drude model will be one of the first subjects 
of transport theory later on. 

But similar to the case of phonons, there were discrepancies between theory and 
experiment in describing the thermal properties.  Specifically, the heat capacity of 
common metals was found to be significantly lower at room temperature and below than 
predicted by classical mechanics combined with Boltzmann probability.  The solution, 
first obtained by A. Sommerfeld and E. Fermi, was to treat both the mechanics and 
statistical mechanics using quantum principles.  As described earlier, this entailed two 
giant conceptual steps: (1) that the electron density was high enough to make individual 
electrons indistinguishable by the de-Broglie criterion, and (2) that the fundamental 
identity of the electrons was subject to the Pauli exclusion principle, requiring the use of 
Fermi-Dirac statistics as a special case of the Boltzmann probability. 

 
Quantum mechanics  

Although the electrons are free to move about the solid, they are rather abruptly 
confined to the boundaries as shown in the one-dim sketch in Fig. 1(a) along the x axis. A 
similar drawing can be made along the y and z axes.   The solid line shows the potential-
energy distribution along one dimension of the “box”.   Consistent with common 
experience, electrons usually do not escape from the solid so there is a binding (potential) 
energy UB.  Unlike the “particle-in-a-box” problem wherein UB →  ∞, the binding energy 
UB in this model is finite, consistent the longstanding experimental observations that 
external forces such as static electric fields or light can cause sudden emission of 
electrons from the surface in a threshold fashion.  For the case of electric fields, the 
threshold is stated in terms of the strength of the electric field.  For radiation it is stated in 
terms of the photon energy hν, and is an even sharper function.  This is the famous 
photoelectric effect – the first direct evidence for the corpuscular nature of 
electromagnetic radiation, i.e., photons.1 

                                                 
1 Interestingly, it was also the citation for A. Einstein’s Nobel prize in 1917 
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To account for the possibility of a metal, the electron density must be assumed 
high enough that the electrons are spatially indistinguishable by the de-Broglie criterion.  
Hence quantum mechanics must be used to solve for the energy states and related effects 
through the solution to Schrodinger’s equation 
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where U’ = U – V.  It is simple to show by the method of separation of variables that this 
can be reduced to three coupled one-dim differential equations of the form 
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were q = x, y, or z and k is a constant.  For each q this is a 2nd-order linear differential 
equation with constant coefficients for which we know the general solution to be  

x xjk x -jk xψ=Ae +Be  
 
where A and B are arbitrary constants.   Unlike the “particle-in-a-box” solution given in 
Chapter 1 where the boundary conditions required ψ to vanish at the walls of the box and 
everywhere outside, here we allow for the possibility that the box is barely confining and 
thus ψ does not vanish at the walls.  Instead, we take advantage of the fact that the 
interface can be assumed physically identical at each wall, so that the wave function 
should be periodic: ψ(x  =  0) = ψ(x  =  LX) ;  ψ(y  = 0) = ψ(y  =  Ly) ; ψ(z  =  0) = ψ(z  =  
LZ) .   Under these conditions, we get the condition 

q q q qjk L -jk Lψ(q = 0) = A+B = ψ(x = L ) = Ae +Beq  which can be true if and only if 

q q q qjk L -jk Le =e =1   . In turn, this requires that  
2π 4πk =0, ± , ± ....q L Lq q  

22 22 ( 2nπ L )( 2mπ L ) ( 2oπ L )y' 2 2 2 x zU = (k +k +k )= +| | x y z2m 2m 2m 2mk  
where m, n, and o are integers.  The allowed values of |k| have the same form as for 
lattice waves with one important difference – the maximum relevant value is no longer 
limited by a Nyquist criterion to π/d as before, where d is the atomic interplanar 
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Fig. 1. (a) Energy diagram of electron in one dimension. (b) Fermi-Dirac function in 
the limit of low temperature where UF > 0 
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separation.  With the “box” of electrons, the values of kx, ky, or kz can get arbitrarily 
large. 
 At this point many students ask the good questions, how can such a simple model 
describe such a complex system as a large population of “free” electrons mixed with the 
dense atomic distribution of a real solid ?  And what happened to the potential energy 
associated with (Coulombic) interaction between the electrons, and between the electrons 
and the atoms ?   The Fermi model makes it possible to describe such complicated 
behavior by one simple augmentation, the introduction of the effective mass m* such that 
the energy states are described by  

2kU =k 2m*      (1) 
In other words, the effect of the complicated interactions is embedded in m*.   

The proof of this simple but profound expression for metals was not made until the 1950s 
by Landau and others.  Surprisingly, it was proven to apply even earlier to a 
revolutionary class of solids known as semiconductors.  This will be addressed with the 
discussion of electron band theory. 
 

Aside on Quasiparticles and Collective Excitations 
 
 A common description of an electron (or any particle for that matter) that can be 
described by (1) is quasiparticle.   By definition, a quasiparticle is a fundamental particle 
interacting with other particles (or forces) such that its “free” particle behavior is 
essentially maintained and the interaction is added as a “dressing” to the mass.  As such, 
if the interactions are virtually “turned off”, the quasiparticle “returns” to the real 
fundamental particle.  This definition is convenient for distinguishing quasiparticles from 
other multiparticle phenomena such as the Cooper pairs of (low-TC) superconductivity.  
The Cooper pairs involve two electrons with opposite spin that can bind because of a 
peculiar interaction with the phonons.  When the phonon interaction is virtually “turned 
off”, what remains is two electrons, not one.  So the Cooper pair is not a quasiparticle. 
 By the same token, phonons are not quasiparticles either because they do not 
“return” to one particle when the atomic interaction is “turned off”.  But because they 
represent one of a large set of independent harmonic oscillators in which each atom plays 
the same fundamental role, they are often called collective excitations.   This label 
probably would not have become popular if not for the discovery in the middle 20th 
century of a multitude of interactions between collections of particles that could be 
represented as independent harmonic oscillators.  Two other examples are the plasmons, 
discussed later in this chapter, and the magnons discussed in the chapter on 
ferromagnetism.  The plasmons are the collective (Coulombic) interaction of “free” 
electrons with the background lattice, and the magnons are the collective (Magnetic) 
interaction of “fixed” spins with each other. 
 
Statistical Mechanics 
 

Since the spin of electrons is ½, they must abide by the Pauli exclusion principle 
so their statistical behavior is described by the Fermi-Dirac distribution.  We use the 
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wave vector k = kx x + ky y + kz z, or its magnitude k ≡ |k| to signify each quantum state.  
And the mean number of electrons in each state is  

F

g g<n >= g fk FDexp(U -µ) k T+1 exp(U -U ) k T+1k B k B
≡ = ⋅  

where µ is the chemical potential, UF is the temperature-dependent Fermi energy, and fFD 
is the Fermi-Dirac function, plotted in Fig. 1(b).  The chemical potential is the customary 
quantity in physics and chemistry.  The temperature-dependent Fermi energy UF is the 
customary quantity in electrical engineering.2   Both depend on temperature. The factor 
Uk is the spin degeneracy factor = 2 for spin ½.  As for phonons <nk> is to be thought of 
as the mean number of electrons in the wave represented by k, this time a particle (de-
Broglie) wave rather than a lattice wave. 

The mean total energy of a population of “free” electrons is given by: 

<U>= <n >Uk k
k
∑  where 

2 2kU =k 2m*  

As with phonons, because <nk> is an explicit function of U, it is easiest to evaluate the 
sum as an integral over U: 

<U>= <n >U D(U)dU = 2f(U)UD(U)dUk k0 0
∞ ∞∫ ∫  

where D(u) is the density of states, i.e., the number of k states per unit energy interval. 
We can calculate D(U) in a similar fashion to phonons using the chain rule of 

differential calculus 
dN(k) dN(k) dkD(U)dU= dU= dU

dU dk dU  
where N(k) is the number of states between k = 0 and k in “k space”.   In a 3-dim solid, 
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Table I.  Density of states as a function of dimensionality 

Dim N(k) D(U)dU Description 
3 Vk3/(6π2) [V(m*)3/2/(2)1/2π2 3 ](U)1/2dU 

Bulk 

2 Ak2/(4π) Am*/(2π 2 )dU 
Quantum Well 

1 Lk/(2π) [L(m*/8)1/2/ ](U)-1/2dU Quantum Wire
 

So,     2
22

)( kV
dk

kdN
π

=  

And from the energy expression:   
2 2 2k dU k dk m*U= , = = =

22m* dk m* dU k  

So, 
                                                 
2 This is often a source of confusion because the physics and chemistry literature usually defines UF as the 
low-temperature limit of µ.   Here we will define that low temperature limit as UF0  to stay consistent with 
electrical engineering, particularly the plentiful literature on semiconductor devices. 
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' 3 2V m* m*VdU 2m*U V(m*) U2D(U)dU= k ( )dU= ( )= dU
2 2 2 2 2 32π k 2π 2π  

Very similar expressions can be derived in one- and two-dimensions using the 
same expression for U(k) but the modified expressions for N(k) listed in Table I.  The 
one- and two-dimensional expressions are very useful for free electrons confined to 
“quantum wires” and “quantum wells”, respectively.   Note that in all cases the 
expressions are a factor of 2 lower than occur many solid-state physics books (e.g., 
Kittel) which combine the spin degeneracy into the density of states.  Since the spin 
degeneracy is broken by the presence of a suitably large external magnetic field, it is best 
to keep D(U) functions independent of spin, as we will see later in the topic of 
magnetism.  So here we include the spin degeneracy in <nk> and any other statistical 
averages, where it belongs. 

 
Fermi Energy  

 
In the application of the Fermi-Dirac distribution to “free” electrons in any 

dimension, it is important to realize that UF is really the chemical potential – a 
macroscopic thermodynamic variable.  In other words, it must be defined in some way at 
the macroscopic level independent of the quantum mechanics and statistics.  The simplest 
definition follows from fixing the total number of electrons in the solid such to a value 
Ne.  This is rather obvious in an isolated solid, but needs to be revised when dealing with 
solids in which the number of electrons changes under external influences.3   For fixed Ne 
we have the following constraint 

<N >= 2D(U)f (U)dUe FD0
∞∫  ,    (10) 

a simple-looking definite integral but having the following subtle aspect.  To be true at all 
temperatures, something inside the integral must change to counteract the effect of 
temperature on fFD.  Clearly, the only parameter that can adjust itself is UF.  So this 
equation becomes the implicit definition of Ne vs UF. 
 Like the case of phonons, it is relatively easy to evaluate (10) in the limit of high 
and low temperature.  The low-temperature case is facilitated by the fact that as T → 0, 
UF > 0 and thus fFD behaves like a unit (i.e., Heaviside) step function θ as clear from Fig. 
1(b): 

f (U) = θ(U -U)FD F0   ;  U =lim{UF0 F
T 0

}
→  

In other words, UF is the maximum energy an electron can have in the limit of zero 
temperature.  Substitution of the step function yields into (10) yields 

F0F
3 23 2 3 2 U V(2m*U )2Vm UU F0N = 2D(U)dU= =e 0 2 3 2 33 2 0π 3π

∫  

                                                 
3 This occurs in semiconductor devices, and forces the introduction of the quasi-Fermi energy as described 
later in Chapter XX. 
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2 3 2/3 2[3π N /V] 2 2/3eU [3π ]FO 2m* 2m*
= = ρ    (11) 

where ρ is the electron bulk density.   Similar expressions can be derived for UF0 in the 

lower dimensions, which both are proportional to 2 2m*/ as shown in Table II. 
 
Table II.  Expressions for the low-temperature Fermi energy UF0 vs density of electrons 
Dimension Density UF0 
3 Bulk, r (3π2ρ)2/3 ⋅ 2 2m*/  
2 Sheet, ρS 2πρS ⋅ 2 2m*/  
1 Line, ρL (ρL)2 ⋅ 2 2m*( ) /π  
 
 The high –temperature limit of (10) is facilitated by the following approximation 
(proven in a homework problem), 
 fFD = [exp(U-UF)/kBT + 1]-1  ≈ [exp(U-UF)/kBT]-1 = exp(UF/kBT)exp(-U/kBT). 
The proof, carried out numerically on F1/2(UF), rests on the fact in the high-T limit UF < 0 
but |UF| >> kBT, so that exp(UF/kBT) is always greater than one, no matter what U is 
considered between 0 and ∞.  Hence  

F B B F B
1/2 3/2(2) (m*k T)U /k T -U/k T U /k T 1/2 -xB<N > 2e D(U)e dU= e (x) e dxe 0 2 3π 0

∞∫ ∫
∞

≈   (12) 

The latter integral is evaluated as a Gamma function by the following identity from 
applied mathematics 

n-1 -1Γ(n)= x e dx
0
∫
∞

          

Two very useful evaluations of Γ(n) are Γ(3/2) = (π)1/2/2 and Γ(5/2) = 3(π)1/2/4.  
Substitution of Γ(3/2) into(12) results in 

F B
3 2U /k T<N > m*k Tee B

1/2 2V (2) π

/⎛ ⎞
⎜ ⎟≈ ⎜ ⎟⋅⎝ ⎠     (13) 

For arbitrary temperatures we must resort to the generic form of (10) 
3 2 3/23 2 1 22(m*) (k T) V2(m*) V x1/2 B<N >= f (U)U dU= dxe FD0 02 3 2 3 exp[x-x ]+1F2π h 2π h

∫ ∫∞ ∞
 

3 2 3 22(m*) (k T)B F (x )1/2 F2 32π

/
≡  

where x ≡ U/kBT and xF ≡ UF/kBT.  F1/2(xF) is one of a class of important quantities in 
solid-state theory called Fermi integrals. 

yxF (x )= dxy F 0 exp[x-x ]+1F
∫∞  
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the most useful ones being F1/2 and F3/2 .  Unfortunately, these are some of the most 
difficult integrals in mathematical physics to approximate over a wide range of 
temperature.  So several generations of scientists and engineers have used look-up tables.  
As we shall see, the widespread availability of computational tools such as Matlab, make 
this a relatively easy exercise by numerical integration.  The results from one integration 
routine are the subject of a homework problem. 
 
Other Useful Metrics for the Fermi Gas 
 
 By definition UF0 is the maximum kinetic energy of an electron in the limit of 
“low” temperature.   But how low is “low” ?  A simple answer to this question is found 
by defining a new quantity, the Fermi temperature TF, by UF0 ≡ kBTF .  A related question 
is: how much kinetic energy do the most energetic electrons have in the Fermi gas ?  The 
answer to this is found through the definition UF0 = (1/2)m*(vF)2 where vF is the Fermi 
velocity.  Both of these quantities can be computed quickly from (11) once ρ is known 
for a given Fermi gas.  The values for several common metals are listed in Table III. 
The density scales rather closely with the number of “free” electrons donated per atom in 
the solid.  But UF0, vF, and TF vary more slowly with ρ, consistent with a sublinear 
functional dependence.  
 
Table III.  Fermi-gas parameters of various common metals 
Material #free electrons 

per atom 
ρ [x1022 cm-3] UF0 [eV] vF [x108 cm/s] TF [x104 K] 

Cu 1 8.4 7.0 1.6 8.1 
Au 1 5.9 5.5 1.4 6.4 
Be 2 24.2 14.1 2.2 16.4 
Zn 2 13.1 9.4 1.8 10.9 
Al 3 18.1 11.6 2.0 13.5 
Ga 3 15.3 10.3 1.9 12.0 
  

Physically, the quantities TF and vF are to be used with some caution because they 
are not thermodynamic nor statistical quantities.  Rather, TF represents the temperature 
much below which the Fermi gas must be described by the Fermi-Dirac distribution 
rather than simple Boltzmann statistics.  The Fermi gas in this case is often called 
“degenerate”, particularly in the context of semiconductor physics.  The opposite limit of 
T >> TF is often called “non-degenerate.” 
 The Fermi velocity is, indeed, a physically meaningful velocity but only for 
electrons having kinetic energies at or near UF0.  From Table III it is clear that this is 
indeed a very high velocity, for example in gold and copper vF/c ~ 0.5% where c is the 
speed of light in vacuum.  But as we shall see later in addressing electron transport, the 
Fermi gas is still random in the sense that for every electron moving in a given direction 
at vF there is probably an electron moving in the opposite direction at vF .  So the effect of 
these “speedy” electrons on the overall transport is not as great as one might first assume. 
 A third quantity of importance to ac electrical and optical response is the Fermi 
wave vector, defined simply by equivalent momentum relations m*vF = kF  .  In essence 
2π/kF is the de-Broglie wavelength of an electron having UF0. 
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Mean Energy and Heat Capacity of Free Electrons 
 

To obtain other thermodynamic and transport properties of the Fermi gas one 
must compute higher-order Fermi integrals.  For example, the mean energy per unit 
volume is given by 

3 2 5 23 2 2(m*) (k T)<U> 2(m*) 3 2 3 2B= f (U)U dU f (x)x dxFD FD0 02 3 2 3V 2π 2π

/
∫ ∫∞ ∞=  (14)  

 
3 2 5 22(m*) (k T)B F (x )3/2 F2 32π

/
≡  

Like the density this has a much simpler form in the limit of low temperature T << TF, 
found by using the step-function property of fFD  

F0
3 2 5 23 2 (2m*) U<U> 2(m*) 3U 3 2 F0U dU UF002 3 2 3V 52π 5π

/( )
∫≈ = = ρ  

 The calculation of specific heat capacity is, in one sense, straightforward since all 
of the energy is kinetic and thus contributes to the total heat Q.   So CV = ∆Q/∆T ≈ 
d<U>/dT.  But when operated on (14), this derivative is complicated by the fact that 
F3/2(xF) is itself implicitly a function of temperature. So like the phonon heat capacity, the 
CV for electrons becomes relatively simple in the high-temperature and low-temperature 
limits.  The high-temperature limit is most easily approximated starting with the same 
approximation as before, fFD(U) ≈ exp(UF/kBT)exp(-U/kBT), so that  

3 2<U> 2(m*) 3/2= f (U)U dUFD02 3V 2π
∫∞ →

F BU /k T3 2 5 22(m*) (k T) eB (5/2)
2 32π

/
Γ  

Since Γ(5/2) = 3(π)1/2/4 , this becomes  
F BU /k T3 2 5 23(m*) (k T) e<U> 3B <N >k Te B3/2 3V 22 2π

/
= =    (15) 

where <Ne> is given by Eqn (13).   
From (15) we get CV ≈ d<U>/dT = (3/2)<Ne>kB .  This is just the electronic 

analog of the Dulong-Petit law for phonons.  And like the phonon case, it can be deduced 
from the classical law of equipartition – that there is (1/2)kBT of energy per “degree-of-
freedom” .  In the case of electrons there are three degrees-of-freedom – three Cartesian 
components of the kinetic energy.  For the phonons, there were six – three Cartesian 
components of the kinetic and potential energies. 

The low-temperature limit of the heat capacity is not so simple but amenable to 
the following approximation method developed first by W. Pauli.  It takes advantage of 
the fact that the kinetic energy of the Fermi gas, unlike phonons or any classical system, 
does not vanish as T → 0.  Hence, the heat capacity can be evaluated by the following 
approximation, 
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δQ d(<U>) d[<U(T=0)> + ∆<U(T)>] d{∆<U(T)>}C =V δT dT dT dT
≡ ≈ =  

since U(T=0) ≡ UF0 is independent of T.  The ∆U term in the numerator can be written 
F0U∆U=<U(T)> - <U(T=0)>= 2f (U)UD(U)dU - 2UD(U)dUFD0 0∫ ∫∞

 (16) 
The second integral is not zero for free electrons since the Pauli exclusion principle 
prevents <U(T=0)> from vanishing.   Following Pauli, (16) can be calculated using the 
clever addition-and-subtraction of a common term.  The common term, 

F0U 2U D(U)dUF00∫ , is chosen in light of the fact that
df (U)FD(U-U )F dT behaves like a 

Dirac delta function when T < TF (see homework problem).  This leads to  
F0 F0F U UU∆U = 2f (u)UD(U)dU - 2UD(U)dU + 2U D(U)dU - 2U D(U)dUFD F0 F00 0 0 0∫ ∫ ∫ ∫∞

But from the definition of Ne ,
F0U 2U D(U)dU = 2U D(U)f (U)dU = U NF F FD F e0 0∫ ∫∞ , so we 

can write 
F0U∆U= 2f (U) (U-U )D(U)dU - 2(U-U ) D(U)dUFD F0 F00 0∫ ∫∞

 
The second integral is independent of temperature, so  

d< U> df(U)C 2(U-U )D(U) dU 2D(U) (U-U )dUv F00 0 F0dT dT
∫ ∫

∆ ∞ ∞≈ ≈ ≈ δ  

df (U)FD2D(U ) (U-U ) dUF0 F00 dT
∫∞≈  

The temperature derivative is 
2+exp[ (U-U ) k T ] (U-U ) k TF B F Bdf (U)FD =

2dT {exp[ (U-U ) k T ]+1}F B
 

So by defining x (U-U ) k TF B≡ , we get 

F B

xe2C 2D(U ) k ×k T x dxv F0 B B -U k T x 2(e +1)
∫∞≈

 

Since we are in the low temperature limit, UF/kBT >> 1, and this integral becomes 
2 2x e dx2C 2D(U )k Tv F0 B - x 2(e +1)

∫∞≈ ∞  

The definite integral has the value π2/3, so that 
22π D(U ) 2F0C k Tv B3

≈  

It is simple to show 
3NeD(U)=
4U  so 

F

e
F U

N
UD

4
3

)( = .  And since FBF TkU ≡  , we get  
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C ππ
=≈   (17) 

This simple expression has several interesting properties.  First it looks 
remarkably similar to the classical result (3/2)<Ne>kB derived from (15).  But for T << 
TF, it is significantly less than the classical result for the following reason.  In this 
degenerate limit, all the electrons occupying energy levels well below the Fermi energy 
are prohibited by Pauli exclusion from making any small energy changes with a change 
of temperature because all nearby levels are already occupied.   Second, it is independent 
of the solid dimensionality so applies just as well to a bulk sample as it does to a quantum 
well or quantum wire.  Third, it is useful over a very wide temperature range in common 
metals, particularly around 300 K or below, since TF > 104  K in these materials.  

Since in metals the the number of free electrons tends to be an integral times the 
number of atoms, we can contrast (17) to the Dulong-Petit law for phonon Bcv kNC 3≈  
where NC is alwasy the number of primitive unit cells .  In the special case of one free 
electron per atom, ce NN = , and we get 

)(64.1
6)(

)( 2

FFv

v

T
T

T
T

phononC
electronC

=≈
π  

This suggests that the electronic contribution to specific heat capacity is insignificant 
except, perhaps, at low temperatures where the 3T dependence for phonons drops to 
levels comparable to the T dependence for electrons.  Experimentally, metals usually 
display a heat capacity given by the expression 

3ATTC += γ , 
where →Tγ  is the electronic term, and AT3 is the phonon term consistent with the 
Debye model.  For temperatures T ≈ TD but T << TF, the phonons generally dominate the 
heat capacity of a solid, even in metals. 

It is interesting to contrast these results against the common experience with the 
thermal properties of metals and insulators.   For example, a 1 cm3 sample of copper 
“feels” much colder to the human touch than a 1 cm3 cube of crystal quartz, for example.  
But this “feel” of cold, like many interactions between solids and outside “forces”, is 
dominated not by the heat capacity but by the thermal conductivity.  And as we shall see 
later in the coverage of transport theory, the thermal conductivity depends on the velocity 
of the energy carriers, be it the electrons or phonons.   Phonons have a maximum velocity 
of the speed of sound, typically between 5,000 and 10,000 m/s for the common metals in 
Table III.   Because this is so much smaller than the average electron velocity in metal, 
the phonons in a crystalline insulator are typically much less effect in heat transport than 

  Metal   )V(cmN 3
e

−    (eV)U F     FT     (300K)
(phonon)C
(electron)C

v

v  

   Cu  221045.8 ×       7.00           81200  3100.6 −×  
 
    Au  22109.5 ×       5.51           63900  3107.7 −×  
 
    Al  221006.18 ×       11.63       134900  3106.3 −×  
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the electrons in a metal, in spite of their much higher specific heat capacity.  We will 
return to this important issue later. 
 
Plasma Oscillations and Waves 
 
 One of the essential aspects of the Fermi electron model in solids is that it 
maintains space-charge neutrality.  The number of free-electrons is counterbalanced by 
an equal number of positively-charged atomic cores.  In other words, the solid is a 
neutral plasma and, as such, can display some interesting effects.  One of the most 
interesting and timely for electronics and photonics is the plasma oscillations.  Physically, 
they arise by displacing the Fermi sea of electrons from its time-averaged position with 
an external electric or magnetic force, and then releasing the force.   What results is a 
decaying collective oscillation of the Fermi sea that is reminiscent of lattice waves.    
Hence, the total energy derived for the Fermi sea is just the static term, analogous to 
cohesive energy of the atomic cores.  The energy associated with the collective motion of 
the electrons is analogous to the lattice waves.  And like the lattice waves, the amplitude 
of the plasma waves can be so small that quantum mechanics must be used to predict the 
magnitude, leading to the plasmons. 
 

Electrostatic Interaction and Plasma Waves 
 
 The discussion of plasmons must start with issue of internal electric fields and the 
deviation of any material from space-charge neutrality.   To simplify the analysis and 
gleen the key concepts, we address the slab sample in Fig. 2 in which the Fermi gas is 
displaced by a distance ∆r uniformly to one side of the fixed atomic cores.  If  ∆r is small, 
there will be a net sheet density ρs of (negative) charge on this side, and an equal density 
of (positive) charge on the opposite side.  This represents a violation of space-charge 
neutrality that, from basic electrostatics, must create an electric field.   The relation 
between the two is given by Poisson’s equation: 

E ρ
∇ ⋅ =

ε      (18) 

where ρ is the net charge density, total positive minus total negative, and ε is the 
dielectric constant.  This is elegantly solved for the given geometry by Gauss’ divergence 
theorem over the “pillbox” drawn in Fig. 2(a).   Integrating the right side of (18) over the 
pillbox, we get  

ρ QdV=
ε εV

∫      (19) 

because of our assumption of a uniform ρ.   To integrate the left side over the pillbox, we 
apply two arguments: (1) Gauss’ divergence theorem, and (2) a surface electric field 
oriented perpendicular to the slab.  Gauss’ theorem follows from very general 
considerations about continuous vector fields, so applies as well in a solid-state (neutral) 
plasma as in any other medium.  The perpendicular electric field follows by symmetry 
considerations when the diameter of the pillbox is much less than the width of the slab.  
The application of both leads to 
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E dV= E dS E A
V S
∫ ∫∇ ⋅ ⋅ = ⋅

   (20) 

where E is the electric field vector, E is its magnitude, V is the volume of the pillbox, S  
is the surface vector, and A is the area of the end cap.   Equating (19) and (20) we get  
 

E = Q/(εΑ) ≡ -eρs / ε ,    (21) 
 
where ρs is the sheet electron density.   
 

Eqn (21) is a well-known result from electrostatics, and must be associated with 
the restoring force shown in Fig. 2(a) arising from Coulomb’s law, 

 
F = Q E⋅      (22) 

 
which points opposite to the electric field in the electron layer since Q is negative there. 
 Now as in the case of lattice waves, we apply Newton’s law to the entire electron 
layer (where force exists) 

2d ∆rF = Q E = M* 
2dt

⋅  

where M* is the effective mass for all the electrons in the layer.  A single-dependent 
variable is created by yet another consequence of the uniform charge assumption: ρs = ρ⋅ 
∆r where ρ is the bulk density.   This allows us to write an oscillation equation 

2Q ρ ∆r d ∆r = M* 
2ε dt

⋅ ⋅
 or

2 2d ∆r e ρ ∆r  =0
2 m*εdt

⋅ ⋅
+   

+ + + + + + +
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Fig. (a) Schematic view showing displacement of Fermi gas of electrons from the positively 
charge and static atoms, creating a surface charge, electric field, E and force F.  The displacement 
shown has infinite wavelength.  (b) Same sample as (a) but now with non-uniform displacement 

of electronic charge, creating a longitudinal plasma excitation of finite wavelength  
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since Q = -Ne ⋅e and M* = Ne⋅m* .  The latter expression is a linear 2nd order differential 
equation with constant coefficients so is expected to have sinusoidal solutions.  Either a 
Asin(ωt) or Bcos(ωt) trial solution leads to the relation 

2e ρ2  -  =0
m*ε

⋅
ω +    or  P

1'22e ρ  ω
m*ε

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

   (23) 

where ωp is the circular plasma frequency.  The solution Asin(ωpt) or Bcos(ωpt) describes 
a plasma oscillation, in this case a uniform one. 
 Another way to think about the plasma wave is that the uniform charge 
assumption limits the solution for the ∆r oscillation to a wave vector k = 0.  It is simple to 
imagine how plasma waves having nonzero wave vectors could exist, similar to the case 
of lattice waves, but not limited to discrete (Nyquist) sampling and the associated 
Brillouin-zone.  If the gradient in the charge density is parallel to the direction of 
propagation, one has a longitudinal plasma wave, similar to the longitudinal lattice wave.  
But a detailed analysis shows that the waves with larger wave vector would have 
commensurately larger frequency ω.  The resulting plasma-wave dispersion curve is 
shown in Fig. (3) and is approximated by the following form up to a power of k2 

2 23k vFω ω (1 + p 210ωp
...+  

   The longitudinal plasma wave differs from the longitudinal acoustical lattice 
wave in two important aspects: (1) ω does not go to zero as k goes to zero, but rather 
approaches a minimum value of ωp, and (2) ω is concave-up versus frequency for 
plasmons, whereas ω is always concave down for acoustical phonons.  These aspects are, 
in fact, related to the fact that there is a cut-off nature to the propagation of plasmons, 
similar to the cut-off condition of electromagnetic modes in a hollow metal pipe (i.e., 
waveguide).  The reason for the cutoff frequency is simply that the plasma displacement 
∆r leads to an oscillation no matter what the wavelength.  In contrast, a uniform lattice 
displacement cannot oscillate because there is no potential energy added to the “springs”, 
i.e., the bonds between adjacent atoms.  In fact, a uniform lattice displacement is 
equivalent to just a linear translation of the entire solid.  An external force is required to 
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Fig. 3. Dispersion curve for solid-state (neutral) plasma waves. 
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produce the translation, but after the force is “turned off”, the solid simply remains in the 
new position and no oscillation occurs. 
 

Plasmons 

 We chose the label ∆r for the displacement of the electron gas from the 
background atoms to a remind us of lattice waves, for which we chose the same label to 
represent the deviation of each atom from its equilibrium position.  And just as with 
lattice waves, we can calculate a total energy for a plasma wave in terms of ∆r.  The 
kinetic energy is straightforward, UKE = (1/2)M*(d∆r/dt)2.  For an assumed (long 
wavelength) plasma wave of the form ∆r = Asin(ωpt), we get the instantaneous form 
 

  UKE = (1/2)M*ω2A2cos2(ωpt)    (20) 
 
 The potential energy term is not so obvious but can be recalled from electrostatics 
wherein one of the most useful results is the (potential) energy density of an electric field 
      

UPE = (1/2) εE2 
 

Substitution of our surface charge layer parameters leads to  
2 2e ρ 2 2U = A sin (ω t)PE p2ε    (21) 

Just as for the lattice waves Eqns (20) and (21) represent, for a given ω, a classical 
harmonic oscillator.  The telltale sign is the quadrature relationship (i.e., 90o phase 
difference) between the instantaneous kinetic and potential energies. 
 Given the harmonic oscillator representation, it is natural to ask, just 
as for lattice waves, what value of plasma-wave amplitude can be resolved 
experimentally.  And this quickly leads to the realization that quantum mechanics must 
be applied in solving for A. The quantities to be quantized are the plasma wave amplitude 
and its conjugate momentum, both done by the same second quantization procedure as 
for phonons.  For brevity we will not go over this procedure again, but jump to the logical 
conclusion.  That is, for each allowed plasma wave on the dispersion curve of Fig. 3, 
there exists a harmonic oscillator ladder of quantum states given by 

U = (n +1/2)k k kω  
In this case nk is the number of plasmons, and represents the amplitude of the plasma 
wave of wave vector k. 
 Statistical mechanics can be applied via the Boltzmann criterion to compute the 
mean energy <Uk> as  

<U >= (<n > + 1/2)k k kω  
And just as with phonons, the “subsystem” is the distributed plasma wave, or “mode”, 
represented by k. As such, the subsystem has no mass and, therefore, no chemical 
potential.  It should therefore be governed by the same Planck statistics as the phonons, 

1<n >=  k exp( /k T 1k B )ω −  
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This means that the same statistical averages, and the associated rise up the solid-state 
hierarchy back to the macroscopic level, can be carried out for plasmons, just as for 
phonons.  For example, we can compute the temperature-dependent part of the mean 
energy for the entire plasma as  

D(ω )hω dωp p<U>=  
exp(hω /k T)-1k B0

∫
∞

 

where D(ω) is the plasmonic density-of-states.  The computation of this interesting 
quantity will be left to a homework exercise, but it is obvious that the cutoff effect ω  ≥ 
ωp displayed in Fig. 3 adds some new subtlety to the calculation.  Specifically, there is a 
singularity in D(ω) since dk/dω diverges at k = 0.  This turns out to be an integrable 
singularity, as first worked out by the theoreticians that developed the plasmon as a 
viable collective excitation of the solid-state – D. Pines and Nozieres – around 1950. 

In addition and of great practical importance, the common metals of Table III 
clearly satisfy hω >>k Tp B , so that <nk> for all plasmonic modes in common metals is 
very small at room temperature.  Plasmons can always be excited, typically by energetic 
electrons or other charged particles, but are not significantly present in thermal 
equilibrium.   This picture changes significantly when the free electron concentration and 
the associated ωp drops to the point where ωp approaches kBT .  This occurs in 
semimetals, for example, and creates rather spectacular effects on the optical properties in 
the visible and infrared portions of the electromagnetic spectrum.   This is just one of 
many interesting effects in the emerging field of research called “plasmonics.” 

 
Internal Electrostatic Variation: Screening 
 

So far our interaction between the electrons has assumed a collective long-
wavelength response of the electron gas to the fixed distribution of atomic positive 
charge, which itself was assumed to be uniform.  What happens if atomic distribution is 
non uniform, as often occurs with charged impurities or defects, or by intentional 
inhomogeneous doping in semiconductor devices ?  This leads to another important 
response of the Fermi electron gas called screening, which is even more prevalent than 
plasma waves since it is not limited to an ωp cutoff frequency.  In short, screening is the 
non-oscillatory collective reaction of the electron gas to internal charges, positive or 
negative, and always tending to achieve space-charge neutrality.    

When the electron gas density is very high as in metals, the screening is very 
strong.  Hence to 1st order the macroscopic electric field in any metal is practically zero 

and the internal electrostatic potential Φ, related by E = -∇Φ , must be uniform.  In other 
words, the metal is an electrical isopotential.   This is arguably one of the most important 
effects in all of electronics and one that we often take for granted.  It allows us to apply 
voltage bias  to electronic devices from remote power supplies.  Even more 
fundamentally, it allows us to define a ground plane (or planes) in devices, integrated 
circuits, and electromagnetic components of all types.  Without such reference planes, it 
would be very difficult if not impossible to solve for the ac voltage and current through a 
semiconductor amplifier, or the electromagnetic modes on transmission lines and in 
waveguides.  
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The solution to the screening problem is difficult, in general, and requires the 
techniques of many-body physics and/or quantum-field theory.  But it becomes tractable 
when Φ(x) is slowly varying and relatively weak compared to kBT.   Under this 
condition, we can think of Φ(x) as a weak perturbation of the thermodynamic equilibrium 
in the solid such that the chemical potential, or temperature-dependent Fermi energy, 
becomes  

'U (x) = U +eΦ(x)F F  
Consequently, the Fermi-Dirac function is modified as  

1<n (x)> = k exp[(U-U -eΦ(x))/k T]+1F B     (30) 

This allows us to make the giant step of combining the statistical mechanics with the 
electrostatics of Poisson’s equation through one of the most important equations in solid-
state, 

ρ -e(< (x)> - )2 tot e AE = - =
ε ε

ρ ρ
∇ ⋅ ∇ Φ =      (31) 

where ρe is (statistically-averaged) spatially-dependent concentration of electrons, and ρA 
is the fixed density of background positive charge.  The pair of equations (30) and (31) 
forms a self-consistent pair when combined with the generalization of (10)  

< (x)>= 2D(U)<n (x)>U dUe k0
∞∫ρ ⋅     (32) 

 The self-consistent solution is generally very difficult, but becomes remarkably 
simple and interesting in the special case of a non-degenerate Fermi gas.  In that case we 
can write  

<n (x)>  exp[U +eΦ(x))/k T] exp(-U/k T)k F B B≈  
and (32) takes on the form 

0
<ρ (x)>  ρ exp[eΦ(x)/k Te B ]≈     (33) 

where ρ0 is a spatially dependent concentration corresponding to (13) 

F B
3 2U /k T m*k Te B

0 1/2 2(2) π

/⎛ ⎞
⎜ ⎟ρ ≈ ⎜ ⎟⋅⎝ ⎠  

Subtitution  into (31) leads the remarkably simple Poisson equation 
2 e/ ){ exp[e (x)/k T] - 0 B A( }∇ Φ = ε ρ Φ ρ  

Now because Φ(x) is assumed weak, we can Taylor expand the exponential to get 
2 e/ ){ [1+ e (x)/k T] - 0 B A( }∇ Φ ≈ ε ρ Φ ρ  

The final step is to suppose that the electrons and background density of positive charge 
is, to first order, neutral, so that ρ0 = ρA, and thus 

2 2e (x)/( k T)0 B( )x∇ Φ ≈ ρ Φ ε    (34) 
 Being a 2nd order linear differential equation with constant coefficients (at a given 
temperature), (34) is particularly easy to solve and has solutions along each direction q of 
a Cartesian space given by 
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Φ(q) = Aexp(αq) + Bexp(-αq)    (35) 
 
By substitution back into (34), we find α has the form 
 
    α =  [(e2ρ0/(εkBT)]1/2 

 

The first term of (35) can be discarded on the grounds of possibly yielding infinite 
potential and therefore, being nonphysical.  The second term yields an exponential decay 
of the potential in space over a characteristic 1/e decay length of 
 

    βD=  [(εkBT/ e2ρ0)]1/2        (36) 
 
This important quantity is called the Debye length after its creator. 4 
 Physically, the Debye solution means that any small disturbance of a non-
degenerate Fermi gas will be neutralized over the length scale of approximately β.   The 
inverse dependence on ρ0 in (36) is rather intuitive, but the direct dependence on T is not 
so clear.  To elucidate this effect, we can recast (36) in a different form using (23) and the 
result derived in Chapter 1 for the rms voltage velocity of a Maxwellian distribuion of 
particles, vrms  = (3kBT/m*)1/2 , here generalized for the effective mass.  We get the 
fascinating expression, 

vrmsβ =
1/2(3) ωp

      (37) 

Now we see that the temperature dependence in (36) is really a velocity, and the greater 
the velocity, the longer the screening length.  Intuitively, this makes sense since 
“speedier” electrons are less “dedicated” to the job of screening the internal charge than 
slower ones.5  
 Finally, we note that the self-consistent set (30)-to-(32) can also be solved 
straightforwardly in the degenerate, or low-temperature, limit of the Fermi gas and for 
weak Φ(x).  Although more laborious than the Debye method and requiring a dielectric 
response analysis, it also yields a characteristic length for the screening effect: 

vFβ  = TF 1/2(3) ωp
     (38) 

This is called the Thomas-Fermi screening length and is the subject of a homework 
problem.  The obvious similarity between (37) and (38) is a great example of the 
profound nature of the Fermi gas model – how such a simple-looking model can yield 
such amazing and powerful predictions ! 

                                                 
4 the same genius who created the Debye model for phonons, amongst other great discoveries of science 
5 The analog in the human world is an impatient worker. 


