
ECE215A/Materials206A      Fundamentals of Solids for Electronics        E.R. Brown/Winter 2008 
Quiz#2, Solution Key 

(1) (a) The Planck function that describes it is <nk> = 
1

exp[ ( ) / ] 1Bk k Tω −
 = <nω>. 

(b) Number of lattice-wave states between 0 and k in k space = N(k) 
N(k) = V/(2π)3 * (4/3)π k3 where V is the real-space volume of the sample. By the chain rule 
of calculus,  D(ω) = dN/dω =  (dN/dk)(dk/dω) and dN/dk = V/(2π)3 * 4π k2= (V/2π2) (ω/v)2   
; dk/dω = 1/v ; both according to Debye model.   So D(ω) = (V/2π2)ω2/v3 
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where the factor of 3 is for the number of acoustical modes (one longitudinal, two transverse) 
and ωD is the maximum frequency of the Debye model .  This is defined by noting that each 
primitive cell contributes one k state in the first Brillouin zone, so that 
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N D(ω)dω=(V/6π v )ω =(V/6π v )ω∫=  or ωD = (6π2NC/V)1/3 ⋅v. 

(d) At high temperatures, we can approximate the Planck function by 1
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ωD in ( c), this becomes TkNU BC3= .  So the heat capacity is given by C ≈ dU/dT = 3NCkB. 

 

2.(a) In 2D, N(k) = (L/2π)2πk2 = Ak2/(4π).  So D(U) = dN/dU = (dN/dk)(dk/dU) = 2( / 2 )( / )Ak m kπ = 

2( / 2 )mA π .  So the sheet density 
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factor of 2 is for spin.   
(b).  In the low temperature limit, we treat fFD as a step function to get 
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0 /F SU mπ σ= . For the stated sheet density, and GaAs (m* = 

0.067me), UF0 = 5.7x10-21 J = 36 meV. 
c) The Fermi velocity is related to UF0 by vF = (2UF0/m)1/2.  Similarly, the Fermi temperature is given by 

TF = UF0/kB .  For the given UF0 and m = m* (GaAs), we get vF = 4.3x105 m/s and TF = 413 K. 
 

3.  (a)  k is the crystal wavevector.  k is not an eigenvalue of the canonical momentum operator.  In the 
relationship between U and k, there are in principle an infinite number of solutions for each k, 
indexed by the integer n. For each n, the solution U vs k is called an energy band. 
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(c) For one Fourier coefficient in expansion of V(x), the bandgap at Bragg plane is: UG = 2VG 

4. (a) The expression 
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 represents an 

ellipsoid if α ≠ β ≠ γ, and a spheroid if any two of α, β, and γ are equal.  If α = β = γ, the constant-
energy surface is a sphere. 

(b) 1
gv ( )k nU k−= ∇ , which has components vgx = 0, vgy  = 0, and vgz =0 at 0k k=  

 (c) The effective mass is defined by m* = 
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, which yields mxx = 1/α, myy = 1/β, and mzz = 1/γ.   


