(1) (a) The Planck function that describes it is $\left\langle\mathrm{n}_{\mathrm{k}}\right\rangle=\frac{1}{\exp \left[\hbar \omega(k) / k_{B} T\right]-1}=\left\langle\mathrm{n}_{\omega}\right\rangle$.
(b) Number of lattice-wave states between 0 and k in k space $=\mathrm{N}(\mathrm{k})$
$\mathrm{N}(\mathrm{k})=\mathrm{V} /(2 \pi)^{3} *(4 / 3) \pi \mathrm{k}^{3}$ where V is the real-space volume of the sample. By the chain rule of calculus, $\mathrm{D}(\omega)=\mathrm{dN} / \mathrm{d} \omega=(\mathrm{dN} / \mathrm{dk})(\mathrm{dk} / \mathrm{d} \omega)$ and $\mathrm{dN} / \mathrm{dk}=\mathrm{V} /(2 \pi)^{3} * 4 \pi \mathrm{k}^{2}=\left(\mathrm{V} / 2 \pi^{2}\right)(\omega / \mathrm{v})^{2}$; $\mathrm{dk} / \mathrm{d} \omega=1 / \mathrm{v}$; both according to Debye model. $\operatorname{So} \mathrm{D}(\omega)=\left(\mathrm{V} / 2 \pi^{2}\right) \omega^{2} / \mathrm{v}^{3}$
(c) Total energy is $U=3 \cdot \int_{0}^{\omega_{D}}<n_{\omega}>\cdot D(\omega) \cdot d \omega$ or $U=\frac{3 V}{2 \pi^{2} v^{3}} \int_{0}^{\omega_{D}} \cdot \frac{\hbar \omega^{3}}{\exp \left[\hbar \omega(k) / k_{B} T\right]-1} d \omega$ where the factor of 3 is for the number of acoustical modes (one longitudinal, two transverse) and ω_{D} is the maximum frequency of the Debye model. This is defined by noting that each primitive cell contributes one k state in the first Brillouin zone, so that
$\mathrm{N}_{\mathrm{C}}={\underset{0}{\omega_{\mathrm{D}}} \mathrm{D}(\omega) \mathrm{d} \omega=\left.\left(\mathrm{V} / 6 \pi^{2} \mathrm{v}^{3}\right) \omega^{3}\right|_{0} ^{\omega_{\mathrm{D}}}=\left(\mathrm{V} / 6 \pi^{2} \mathrm{v}^{3}\right) \omega_{\mathrm{D}}^{3} \text { or } \omega_{\mathrm{D}}=\left(6 \pi^{2} \mathrm{~N}_{\mathrm{C}} / \mathrm{V}\right)^{1 / 3} \cdot \mathrm{v} ~}_{\text {. }}$
(d) At high temperatures, we can approximate the Planck function by $\frac{1}{\exp \left[\hbar \omega / k_{B} T\right]-1} \approx \frac{k_{B} T}{\hbar \omega}$, so we can approximate $U \approx \frac{3 V}{2 \pi^{2} v^{3}} \int_{0}^{\omega_{D}} \cdot k_{B} T \cdot \omega^{2} d \omega=\frac{V \cdot k_{B} T}{2 \pi^{2} v^{3}} \omega_{D}^{3}$. According to the definition of ω_{D} in (c), this becomes $U=3 N_{C} k_{B} T$. So the heat capacity is given by $\mathrm{C} \approx \mathrm{dU} / \mathrm{dT}=3 \mathrm{~N}_{\mathrm{C}} \mathrm{k}_{\mathrm{B}}$.
2. (a) In $2 \mathrm{D}, \mathrm{N}(\mathrm{k})=(\mathrm{L} / 2 \pi)^{2} \pi \mathrm{k}^{2}=\mathrm{Ak}^{2} /(4 \pi)$. So $\mathrm{D}(\mathrm{U})=\mathrm{dN} / \mathrm{dU}=(\mathrm{dN} / \mathrm{dk})(\mathrm{dk} / \mathrm{dU})=(A k / 2 \pi)\left(m / \hbar^{2} k\right)=$ $\left(m A / 2 \pi \hbar^{2}\right)$. So the sheet density $\sigma_{s}=A^{-1} \int_{0}^{\infty} f_{F D} D(U) d U=\int_{0}^{\infty} \frac{2\left(m / 2 \pi \hbar^{2}\right) d U}{\exp \left[\left(U-U_{F}\right) / k_{B} T\right]+1}$ where the factor of 2 is for spin.
(b). In the low temperature limit, we treat f_{FD} as a step function to get
$\sigma_{S} \approx \int_{0}^{U_{\mathrm{FO}}} 2\left(m / 2 \pi \hbar^{2}\right) d U=m U_{F 0} / \pi \hbar^{2}$ or $U_{F 0}=\pi \hbar^{2} \sigma_{S} / m$. For the stated sheet density, and GaAs $\left(\mathrm{m}^{*}=\right.$ $0.067 \mathrm{~m}_{\mathrm{e}}$), $\mathrm{U}_{\mathrm{F} 0}=5.7 \times 10^{-21} \mathrm{~J}=36 \mathrm{meV}$.
c) The Fermi velocity is related to $U_{F 0}$ by $\mathrm{V}_{\mathrm{F}}=\left(2 \mathrm{U}_{\mathrm{F} 0} / \mathrm{m}\right)^{1 / 2}$. Similarly, the Fermi temperature is given by $\mathrm{T}_{\mathrm{F}}=\mathrm{U}_{\mathrm{F} 0} / \mathrm{k}_{\mathrm{B}}$. For the given $\mathrm{U}_{\mathrm{F} 0}$ and $\mathrm{m}=\mathrm{m} *(\mathrm{GaAs})$, we get $\mathrm{V}_{\mathrm{F}}=4.3 \times 10^{5} \mathrm{~m} / \mathrm{s}$ and $\mathrm{T}_{\mathrm{F}}=413 \mathrm{~K}$.
3. (a) k is the crystal wavevector. $\hbar k$ is not an eigenvalue of the canonical momentum operator. In the relationship between U and k , there are in principle an infinite number of solutions for each k , indexed by the integer n . For each n , the solution U vs k is called an energy band.
(b) $\psi(x)=\sum_{k} C_{k} e^{j k x} \quad V(x)=\sum_{G} V_{G} e^{j G x}$
(c) For one Fourier coefficient in expansion of $\mathrm{V}(\mathrm{x})$, the bandgap at Bragg plane is: $\mathrm{U}_{\mathrm{G}}=2 \mathrm{~V}_{\mathrm{G}}$
4. (a) The expression $U(\vec{k})=\theta\left(U-U_{0}\right)\left\{U_{0}+\frac{\hbar^{2}}{2}\left[\alpha\left(k_{x}-k_{0 x}\right)^{2}+\beta\left(k_{y}-k_{0 y}\right)^{2}+\gamma\left(k_{z}-k_{0 z}\right)^{2}\right]\right\}$ represents an ellipsoid if $\alpha \neq \beta \neq \gamma$, and a spheroid if any two of α, β, and γ are equal. If $\alpha=\beta=\gamma$, the constantenergy surface is a sphere.
(b) $\overrightarrow{\mathrm{v}}_{\mathrm{g}}=\hbar^{-1} \vec{\nabla}_{k} U_{n}(\vec{k})$, which has components $\mathrm{v}_{\mathrm{gx}}=0, \mathrm{v}_{\mathrm{gy}}=0$, and $\mathrm{v}_{\mathrm{gz}}=0$ at $\overrightarrow{\mathrm{k}}=\vec{k}_{0}$
(c) The effective mass is defined by $\mathrm{m}^{*}=\hbar^{2}\left(\frac{\partial^{2} U}{\partial k^{2}}\right)^{-1}$, which yields $\mathrm{m}_{\mathrm{xx}}=1 / \alpha, \mathrm{m}_{\mathrm{yy}}=1 / \beta$, and $\mathrm{m}_{\mathrm{zz}}=1 / \gamma$.

