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Homework 5 

1. Show that the mean kinetic energy of a three-dimensional Fermi gas of N free electrons at 0 K is 
3

0 5 FU NU=  

2. Classical limit of Fermi gas. (a) For the Fermi gas of electrons and three-dim density-of-states 

derived in class, show that the mean specific energy of a Fermi gas is given by (3/2)ρkBT where 

ρ is the electron density (clue: take the high-temp approximation of the Fermi-Dirac function). 

(b) Derive an expression for the Fermi energy UF(T) in the high-temp limit in terms of ρ, T, m*, 

and fundamental constants.  For what electron density does UF = 0 at T = 300 K, assuming m* = 

me the mass of an electron in vacuum ?  If the temperature is increased at this same density, 

what happens to the Fermi energy ?  What does this mean physically ? 

(c) What is the specific heat capacity of the electron gas in the high-temp approximation.  How 

does this compare to high-temperature heat capacity from acoustical phonons in any crystal 

assuming one electron is contributed to the gas by each primitive cell in the crystal ?. 

3.  Show that the Fermi energy of a Fermi gas in two dimensions is given by 

( ) ( )2 *ln exp 1F B S BU T k T m k Tπρ⎡ ⎤= −⎣ ⎦   for ρS electrons per unit area (sheet chart density). 

4. Numerical integration to evaluate Fermi-Dirac integrals. 

Some of the most useful definite integrals in all of electronics are the Fermi integral of order y,  

defined by  Fy(xF) = 
0 exp( ) 1

y

F

x dx
x x

∞

− +∫   .  F1/2(xF) comes up in the relationship between density 

and UF, and F3/2(xF) comes in the mean energy.  The Fermi integrals cannot be reduced to closed 

form, so look-up tables were used by scientists and engineers for a long time.  Today these 

integrals can be integrated quickly and with high accuracy on PCs and laptops by a number of 

different computational tools, such as Matlab.  Use your favorite computational tool to 

numerically evaluate F1/2(xF) for xF = -20 to xF = 100 in increments of xF = 10.  Use these values 

to plot the electron concentration in a Fermi gas for m* = me and T = 300 K. 

(clue for Matlab users: consider the following two lines in the workspace: 

f = inline(‘x.^0.5/(exp(x-xf)+1)’);                     g = quadl(f,0,xmax,1e-6,0,xf)  

where xf is the parametric normalized Fermi energy, and xmax is the maximum range of the 

integral, which should be set to about 10 xf or more. (quadl is a nice integration algorithm… 

please give it a try if you have access to MATLAB). 
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5. The reaction of the Fermi gas to an internal slowly-varying electrostatic-potential disturbance 

φ(x) was derived in class in the non-degenerate limit and involved a length scale, the Debye 

screening length LD = (εkBT/e2n)1/2 where ε = εrε0 is the dielectric constant and n is the density 

free electrons.   

(a) Express LD in terms of the circular plasma frequency and the rms velocity (i.e., variance) for 

a Maxwellian distribution.   

(b)  A similar but tedious calculation in the degenerate limit results in a Thomas-Fermi 

screening length, LTF = (2εUF/3ne2)1/2.   Re-write this in terms of the circular plasma 

frequency and the Fermi velocity, and contrast to the answer in (a). 

(c) Now evaluate the following quantities for two very important materials, GaAs and Cu, in 

the stated MKSA units and at 300 K:  

RMS thermal velocity, Fermi energy, Fermi velocity, circular plasma frequency, linear 

plasma frequency, Debye screening length, and Thomas-Fermi screening length. 

 

(for GaAs assume n =2.0x1018 cm-3, εr = 12.8, m* = 0.067 me; 

   for Cu assume n = 8.4x1022 cm-3, er = 1, and m* = me ) 


