Homework 5

- 1. Show that the mean kinetic energy of a three-dimensional Fermi gas of N free electrons at 0 K is $U_0 = \frac{3}{5} N U_F$
- Classical limit of Fermi gas. (a) For the Fermi gas of electrons and three-dim density-of-states derived in class, show that the mean specific energy of a Fermi gas is given by (3/2)ρk_BT where ρ is the electron density (clue: take the high-temp approximation of the Fermi-Dirac function).
 (b) Derive an expression for the Fermi energy U_F(T) in the high-temp limit in terms of ρ, T, m*, and fundamental constants. For what electron density does U_F = 0 at T = 300 K, assuming m* = m_e the mass of an electron in vacuum ? If the temperature is increased at this same density, what happens to the Fermi energy ? What does this mean physically ?
 (c) What is the specific heat capacity of the electron gas in the high-temp approximation. How does this compare to high-temperature heat capacity from acoustical phonons in any crystal assuming one electron is contributed to the gas by each primitive cell in the crystal ?.
- 3. Show that the Fermi energy of a Fermi gas in two dimensions is given by

$$U_F(T) = k_B T \ln \left[\exp \left(\pi \rho_S \hbar^2 / m^* k_B T \right) - 1 \right]$$
 for ρ_S electrons per unit area (sheet chart density).

4. Numerical integration to evaluate Fermi-Dirac integrals.

Some of the most useful definite integrals in all of electronics are the Fermi integral of order y,

defined by
$$F_y(x_F) = \int_0^\infty \frac{x^y dx}{\exp(x - x_F) + 1}$$
. $F_{1/2}(x_F)$ comes up in the relationship between density

and U_F, and F_{3/2}(x_F) comes in the mean energy. The Fermi integrals cannot be reduced to closed form, so look-up tables were used by scientists and engineers for a long time. Today these integrals can be integrated quickly and with high accuracy on PCs and laptops by a number of different computational tools, such as Matlab. Use your favorite computational tool to numerically evaluate $F_{1/2}(x_F)$ for $x_F = -20$ to $x_F = 100$ in increments of $x_F = 10$. Use these values to plot the electron concentration in a Fermi gas for m* = m_e and T = 300 K. (clue for Matlab users: consider the following two lines in the workspace: $f = inline('x.^0.5/(exp(x-xf)+1)');$ g = quadl(f,0,xmax,1e-6,0,xf)where xf is the parametric normalized Fermi energy, and xmax is the maximum range of the integral, which should be set to about 10 xf or more. (quadl is a nice integration algorithm...

please give it a try if you have access to MATLAB).

- 5. The reaction of the Fermi gas to an internal slowly-varying electrostatic-potential disturbance $\phi(x)$ was derived in class in the non-degenerate limit and involved a length scale, the Debye screening length $L_D = (\epsilon k_B T/e^2 n)^{1/2}$ where $\epsilon = \epsilon_r \epsilon_0$ is the dielectric constant and n is the density free electrons.
 - (a) Express L_D in terms of the circular plasma frequency and the rms velocity (i.e., variance) for a Maxwellian distribution.
 - (b) A similar but tedious calculation in the degenerate limit results in a Thomas-Fermi screening length, $L_{TF} = (2\epsilon U_F/3ne^2)^{1/2}$. Re-write this in terms of the circular plasma frequency and the Fermi velocity, and contrast to the answer in (a).
 - (c) Now evaluate the following quantities for two very important materials, GaAs and Cu, in the stated MKSA units and at 300 K:
 RMS thermal velocity, Fermi energy, Fermi velocity, circular plasma frequency, linear plasma frequency, Debye screening length, and Thomas-Fermi screening length.
 - (for GaAs assume $n = 2.0 \times 10^{18} \text{ cm}^{-3}$, $\epsilon_r = 12.8$, $m^* = 0.067 \text{ m}_e$; for Cu assume $n = 8.4 \times 10^{22} \text{ cm}^{-3}$, $e_r = 1$, and $m^* = m_e$)