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Quick Review of Angular Momentum in Quantum Mechanics 

 
For a “central” potential energy (i.e., one that depends only on the radial variable, r, in 

spherical coordinates), the solution to the Schrödinger equation can always be written as 

a product ψ = R (r) Y (θ,φ).  The function Y is the angular momentum eigenfunction  

requiring two (quantum) numbers per eigenvalue (corresponding to the two degrees of 

angular freedom at a given r).  The first one is defined by 

 2 2( 1)L Y Yβ β= + h  (1) 

where L is the angular momentum operator, and β = 0, 1, 2. ….and the 2nd quantum 

number  is  defined by 

                    z zL βΦ = Φh      (2) 

where ∆βz = 1, and βz = 0, +/-1, +/-2, ….up to a maximum magnitude of β.  In other 

words, β defines the total angular momentum, and βz defines its projection on the z axis.  

Clearly the number of βz values for each value of β is 

Nβ = 2β+1    (3)   

Hence, it is convenient to think of the orbital angular momentum as the vector 

lying on the cone shown in Fig.1.  It has a fixed   length of ( 1)β β + ⋅h , and a fixed 

projection on the z axis of zβ h , but a random orientation on the cone, consistent with the 

statistical nature of quantum mechanics.  All of the possible degenerate eigenstates of L 

are then represented by 2β + 1 different cones, each having a projection on the z axis 

given by one of the allowed values of βz 
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It is a fundamental fact of quantum mechanics that the quantization expressions 

(1) and (2) remain valid in form for any spin angular momentum S if we replace L by S, 

Lz by Sz , and β by s, so that the operator S2 has the eigenvalue 2( 1)s s + h   and the 

operator Sz has the eigenvalue zs h  .  The possible increments of s and sz are defined by 

∆s = 1, ∆sz  = 1, and the maximum magnitude of sz is s, so that there are Ns =  2s+1 

values values of sz for each s.  The key difference between spin and angular momentum is 

that s can be either integral or half-integral.  As we saw in 215A, this apparently trivial 

distinction is the means for classifying all know particles in nature, not just electrons.  

Integral spin means the particles (called bosons) can occupy the same space-spin state 

and must have symmetric (with respect to particle label exchange) total wave functions, 

and half-integral spin means that the particles (called fermions) can not occupy the same 

space-spin state and must have an antisymmetric total wave function.   

It is remarkable that the quantization expressions (1) to (3) remain valid in form 

for a total angular momentum J if we replace L by J and Lz by Jz so that J2 has eigenvalue 
2( 1)γ γ + h  and Jz has eigenvalue  zγ h .  Again, the increments are given by ∆γ = 1, ∆γz  = 

1, so that the maximum magnitude of γz is γ and there are 2γ+1 values values of γz for 

each γ.    And just like spin angular momentum, neither γ or γz are necessarily integral.  

This makes total angular momentum difficult, in general, but relatively simple if the 

particles in question are electrons and there is no interaction between their orbital and 

x

y

z

r
L

x

y

z

( 1)L β β= + ⋅
r

h
zβ h

x

y

z

r
L
r
L

x

y

z

( 1)L β β= + ⋅
r

h
zβ h

 
 

Fig. 1. Three-dimensional model of angular momentum vector of electron consistent with rules of quantum mehanics. 
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spin operators.1  In that case, we utilize the fact that the spin for each individual electron 

is strictly binary, spin up or down along an arbitrarily chosen axis, and has no component 

on any other axis.  We are then free (and wise) to choose this axis to coincide with the z 

axis of the angular momentum coordinate system for that electron.  In this case there are 

just two possible total angular momentum magnitudes for that electron: (1) |J| = |L + S| 

and (2) |J| = |L – S|.   In other words, the two possible eigenvalues have γ = β + ½, and 

γ = β – ½. 

.  Fortunately, the same reasoning applies to a system of electrons such as all the 

electrons occupying a shell in an atom.2  It is simply a binary addition process !  Each 

electron contributes two possible total momentum eigenvalues corresponding to the two 

possible magnitudes γ1 = β1 + s1 = β1 + 1/2 and γ1 = β1 - s1 = β1 – 1/2.  When combined 

with the two possible total angular momentum values for the second electron, we get (by 

combinatorial reasoning) 2n unique total momentum total angular momentum quantum 

numbers.  Stated more generally, when a system (e.g., one electron) having total 

momentum quantum number γ1 is combined with another non-interacting system having 

total momentum quantum number γ2, the resulting total angular momentum quantum 

number has a maximum value of γ1 + γ2  and a minimum value of |γ1 – γ2|.  This 

generalization is a very important result of quantum mechanics called the angular 

momentum addition theorem.  It works for arbitrary particles and integral or half-integral 

values of γ.  In this book we will only use it for electrons 

 

   Energy in Angular Momentum 

 
Given the quantum picture of total angular momentum J, the magnetic-dipole potential 

energy is 

 

 PE local B j B localU g g Bµ γ µ= − ⋅ = ⋅ =m B J B . (4) 

 

                                                 
1 An approximation known in atomic physics as the L-S approximation. 
2 For an excellent introduction to shell theory and other aspects of atomic physics, see R. Eisberg and R. 
Resnick, “Quantum Physics” (Wiley, New York, 1974). 
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In other words, for J pointed anywhere in the upper hemisphere of Fig. 1 (the polar axis 

now being defined parallel to localB ), the potential energy is positive.  And for J pointed 

anywhere in the lower hemisphere, the potential energy is negative.  According to 

quantum mechanics, γj must have 2J + 1 equally spaced values corresponding to 2J + 1 

equally spaced energy levels.   For example: if J = 3/2, then  

 
3 1 1 3, , ,
2 2 2 2jγ = − −  ,  (5) 

representing four equally spaced quantum levels.   

Since spins are hidden variables within atoms, and atoms are generally 

distinguishable, we can apply the Boltzmann statistics to determine the microscopic 

magnetic moment and related macroscopic quantities.3  The probability of a magnetic 

moment being aligned along B is 
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  (6) 

 

This is a ratio of partial sums that can be shown to be: 

 | | ( )B JgJ B xµ< > =m . (7) 

where BJ is called the Brillouin function, and x is given by 

   2 1 (2 1) 1( ) coth coth
2 2 2J
J J x xB x

J J J J
+ +⎡ ⎤ ⎛ ⎞≡ − ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

  (8) 

where      

 B Bx gJ B k Tµ=  (9) 

                                                 
3 A fact that seems peculiar at first until one recalls that there is nothing inherently classical or quantum 
mechanical about the Boltzmann statistics.  
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Because the Boltzmann statistics always favors the lower energy states over the higher 

ones, the mean magnetic moment will contain more weighting for <m> along B than for 

the opposite case.  So we expect the mean magnetic dipole moment to be paramagnetic. 

 The magnetization, polarizability, and susceptibility are then given by 

 

 ( )B Jn ngJ B xµ< >= < >=M m , (10) 

 

 ( )| |
| |

B J
m

local local

gJ B xµα ≡ =
m

B B
  ,  (11) 

and       

 m m 0nχ α µ≈  (12) 

 

where the last step follows by assuming nαmbµ0 << 1 – an assumption that will become 

invalid in ferromagnetic solids.  In the high-temperature limit, one can approximate from 

(7), (8), (11), and (12), 
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where ( 1)p g J J≡ +  and C is the Curie constant and defined by 
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Eqn (13) is called the Curie law, and is generally regarded as the hallmark of 

paramagnetism. 

 

 


