ECE215B/Materials206B Winter 2008 Prof. Brown/ECE Dept/UCSB Homework #1 Solutions

1) Silicon capacitor: The potential energy can be expressed as

$$U = \frac{V}{2} \varepsilon_0 E_0^2 + \int_0^{E_{in}} \vec{E}'_{in} d(\vec{P} \cdot V)$$

where V is the sample volume, E_0 is the magnitude of the field that would exist in the absence of the solid, and E' and P' are the dummy electric-field and polarization vector variables. Since the solid is inside a metallic parallel-plate capacitor (i.e., a Si sample with metal plates on the surface), $\vec{E}_0 = \vec{E}_{in}$. Furthermore, we can assume that \vec{E}_{in} and \vec{P}_{in} are both uniform so that $d(\vec{P}_e \cdot V) = V \cdot d\vec{P}_e$. And if we consider Si as a good dielectric, $\vec{P}_e \approx \varepsilon_0 \chi_e \vec{E}_{in}$ so that

$$U' = \frac{U}{V} = \frac{1}{2} \varepsilon_0 E_{in}^2 + \varepsilon_0 \chi_e \int_0^{E_{in}} \vec{E}'_{in} \cdot d\vec{E}'_{in} = \frac{1}{2} \varepsilon_0 E_{in}^2 (1 + \chi_e) = \frac{1}{2} \varepsilon_0 \varepsilon_r E_{in}^2$$

a) The maximum U' occurs when $E_{in} = E_{max}$, so that

$$[U']^{\text{max}} = 4.8 \times 10^4 J/m^3 = 4.8 \times 10^{-2} J/cm^3$$
 for $\varepsilon = 12$, $E_{\text{max}} = 3 \times 10^7 \text{ V/cm}$

b) The maximum polarization per unit volume is simply

$$P_e^{\max} = \varepsilon_0 \chi_e E_{\max} = 2.9 \times 10^{-3} \text{ Cb/m}^2 \text{ for } \chi_e = \varepsilon_r - 1 = 11$$

2. (Atomic polarizability). Diamond, silicon, and germanium

(a) ε _r	Si 11.7	Ge 15.8	•	amond) 5.5	
Atomic concentration [m ⁻³]	5.00E+28	4.42E+28	1.76	6E+29	
(b)	Si	Ge	C (dia	amond)	
$(\epsilon_r-1)/(\epsilon_r+2)$ Polarizability, [Cb-m ² /V]	7.81E-01 4.147E-40	8.31E-01 4.994E-40		6.00E-01 9.051E-41	
(c) atomic radius [A]	Si	Ge	C (dia	amond)	
$R = (\alpha/4\pi\varepsilon_0)^{1/3}$	1.55	1.65	0.93		
(d)		Si	Ge	C (diamond)	
Nearest neighbor distance [Ang], R_{nn}		2.35	2.45	1.54	
Half nearest neighbor distance, $R_{nn}/2$ $R_{nn}/(2R_0)$		1.18 0.76	1.23 0.74	0.77 0.82	

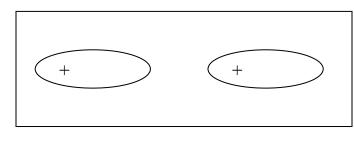
ECE215B/Materials206B Winter 2008 Prof. Brown/ECE Dept/UCSB Homework #1 Solutions

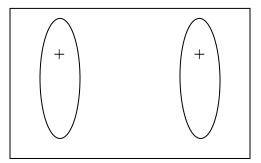
3. (Ionic polarizability): KI and MgO

(a)	KI	MgO
Nearest neighbor separation [Ang]	3.533	2.1
Unit cell constant [Ang]	7.066	4.2
Unit cell volume [m^3]	3.52794E-28	7.4088E-29
Stiffness coeff C11 [N/m^2]	2.740E+10	2.860E+11
(b)	KI	MgO
Density [KG/m ³]	3142.95	3634.02
Speed of sound [m/s]	2952.61	8871.34
q/e	1	2
α	2.65E-39	1.71E-39
Note in (b) that MgO is bivalent	, i.e., each ion	is doubly charged

(C)	KI	MgO
χ _e (≈n*α/ε₀)	3.40	10.4
Calculated Er	4.40	11.4
*Accepted ɛr	5.10	9.65
www.crystran.co.uk/kidata.htm*		

4. Ferroelectric criterion for atoms, two neutral atoms of polarizability α , and separation a.


Ferroelectric criterion is the "self-consistent" criterion for spontaneous polarization: that the electric field at a given atom caused by all the neighboring polarized atoms (moment \vec{P}) is

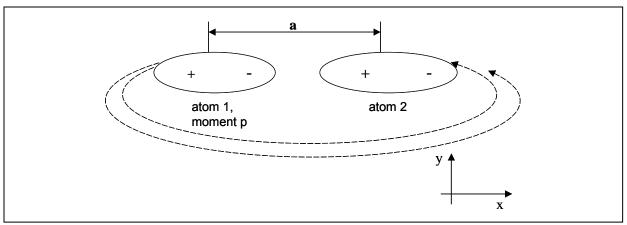

equal to the electric field required to polarize the given atom to moment \vec{p} (sounds like "double talk", but that's what self-consistency is all about). This allows for a spontaneous polarization in the absence of external fields.

Consider two alignments of atomic dipoles:

1) atomic dipoles collinear:

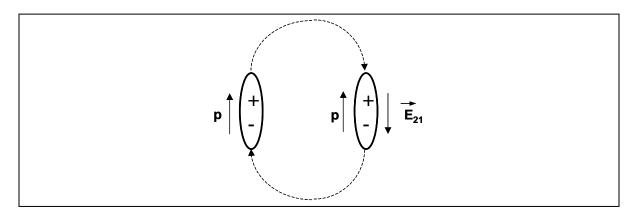
parallel but not collinear:

ECE215B/Materials206B Winter 2008 Prof. Brown/ECE Dept/UCSB Homework #1 Solutions


Independent of orientation, \vec{E} from dipole is: $\frac{3(\vec{p}\cdot\vec{r})\vec{r} - r^2\vec{p}}{4\pi\epsilon_0 r^5}$.

a) for co-linear dipoles:

Field on atom 2 from atom 1 is $\vec{E}_{21} = \frac{2p_1}{4\pi\varepsilon_0 a^3} (-\hat{x})$. Induced dipole moment on atom 2


is
$$\vec{p}_2 = \alpha \vec{E}_{21} = \frac{2\alpha p_1}{4\pi\varepsilon_0 a^3} (-\hat{x})$$
. But the fact that \vec{p}_1 and \vec{p}_2 are co-linear

$$\Rightarrow |\vec{p}_2| = p = \frac{2\alpha p_1}{a^3} = \frac{2\alpha p}{4\pi\varepsilon_0 a^3} \text{ or } \alpha = 2\pi\varepsilon_0 a^3$$

b) for atomic dipoles parallel but not collinear: in this case, the filed at atom 2 caused by dipole at atom 1 is always pointed opposite to dipole direction at atom 1.

So atomic dipoles cannot co-align on the fields from neighboring dipoles \Rightarrow no ferroelectricity for just two atoms along this direction.

