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Homework 2 Solutions 

1. Diamagnetic susceptibility of atomic hydrogen: 
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where n is the number of atoms N per unit volume V. 
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can immediately integrate over ? and f  to get  
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Let N = Avogadro’s number 
236.02 10 atoms mole= × . 

113.0 10 /−⇒ = − × Vχ  where V is the volume of the 1-mole sample in m3.    

2. Heat capacity from internal degrees of freedom, energy splitting ∆ ⋅ Bk  

(a) By Maxwell Boltzmann Statistics  
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Set U1 (arbitrarily) to zero so that U2 = kB∆. 
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(b) The plot of the heat capacity in (a) is shown below.  By graphical means, we determine that the 

maximum in CV occurs at a value of ∆/T = 2.06 

3. Langevin model of Paramagnetism 

(a) For the classical magnetic dipole, we have 0m localU m B= − ⋅
rr .  Without loss of generality we can 

choose Blocal (henceforth written as BL) along the z axis in a spherical coordinate system, so that Um = -

m0BLcosθ .  The probability phase space is defined simply by the solid angle since the dipole can be 
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Fig. 1 
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pointed anywhere along a direction θ,φ .  The probability of pointing in a certain direction is dictated by 

the Boltzmann ansatz, 
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where dΩ is the differential solid angle, dΩ = sinθ dθ dφ..  It also allows us to treat the dipole using the 

inherently random radial unit vector in spherical coordinates, 

0 0ˆ ˆ ˆ ˆ( sin cos sin sin cos )m m r m x y zθ ϕ θ ϕ θ= = + +
r

    

This by statistical principles, we can write the mean value of the magnetic dipole moment: 
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Clearly the terms in the numerator that include the x and y unit vectors vanish since they involve 

integrating cosφ or sinφ from 0 to 2π .   The term containing the z unit vector can be evaluated through 

the substitution W = m0BL/kBT .   
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Evaluation of the denominator leads to  
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The numerator is a bit more work, requiring integration by parts.  We set U = cosθ dθ and dV = 
sinθexp(Wcosθ), and get  dU = -sinθdθ and V = -exp(Wcosθ)/W 
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Summing (3) and (4), dividing by (2), and substitution into (1) yields 
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This is the famous Langevin function 

(b) If there are n such dipoles per unit  volume, the mean magnetization becomes 
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    (5) 

In the limit of high temperature, it is easy to show that the Taylor’s series of coth(x) for small x is  
 

coth(x) = 1/x + x/3 + …. 
 
The first term of this cancels the last term in (5), so that  
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The high temperature limit of the paramagnetic susceptibility is 
2
0 0

0

| | | |
| | | | / |m

B

nmM M
k TH B

µ
χ

µ

 
≡ = =  

 

r r
r r  

 
4. Curie-Weiss-Heisenberg Model of Ferromagnetism 

(a) If 0local inB B Mγµ= +
r r r

, then by inserting (5) from above, we can write 
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0 0 0 0 0ˆ[coth( / ) ( / )]local L in in L B B LB B B nm B n m z m B k T k T m Bγµ γµ≡ = + = + ⋅ −
r r r rr

 (6) 

This can be re-written as  

0 0 0 0[coth( / ) ( / )]L in L B B LB B n m m B k T k T m Bγµ= + ⋅ −          (7) 

since BL and Bin are both along the z axis.   Eqn (7) is an implicit equation in BL since BL occurs on 

both sides and can not be isolated.    

(b) Eqn (7) can be solved uniquely for BL in the case of spontaneous magnetization, which means that 

BL ≠ 0 even when Bin = 0.   From such a solution, we can get M through M = BL/(γµ0).  To proceed 

we re-write (7) using β  = m0BL/kBT, under the spontaneous condition: 

0 0 0/ [coth( ) (1/ )]Bk T m n mβ γµ β β= ⋅ −  

or            2
0 0/( ) [coth( ) (1/ )]Bk T n mβ γµ α β β β≡ ⋅ = −    (8) 

where α defines the quantity kBT/[nγµ0(m0)2].  This can be solved implicitly using Excel, for example, or 

some other graphics tool.    The solution table is shown on the attached page.  The solution for α as β  

goes to zero is simply α = 0.333.   

 This might look like pure math until we recognize that since M = BL/(γµ0), and β  = m0BL/kBT, 

we can express M in the temperature independent form, 
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In Fig. 2 we plot the quantity M/(nm0) = α⋅β  vs both β and α.  When plotted vs β, we see the vanishing of 

M as β goes to zero consistent with the first step of Eqn (9).  When plotted vs α, we see something even 

more interesting – the ferromagnetic phase transition curve.  The value of α where M reaches zero 

defines the Curie temperature, TC, as will be quantified in (c) below. 
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(c) By definition, TC can be found from the value of α that make M go to zero.  Specifically, it is the 

(maximum) value of α that solves Eqn (8) as β  goes to 0.  From the table below, this is α = 0.333.  But 

we also know α = kBT/[nγµ0(m0)2].  So we can write 

 TC = αmax nγµ0(m0)2/kB.          (10) 

To estimate n, it is good to start with iron, a bcc solid with lattice constant 2.87 Angstrom and, 

therefore, an atomic concentration of 2/(2.87 Ang)3 = 8.5x1028 m-3.  And we assume there is one 

magnetic moment per atom.  Thus, if m0 = µB =9.27x10-24 [MKSA], and we set TC = 300 K, we can 

solve for γ = 1355, which is not much higher than expected.  Putting in a more realistic value of m0 

would decrease this quadratically as seen from (10) above. 

Solution table 
β α 

0.1 0.333 
0.2 0.332 
0.3 0.331 
0.4 0.33 
0.5 0.328 
0.6 0.325 
0.7 0.323 
0.8 0.32 
0.9 0.3165 
1 0.313 
2 0.269 
3 0.224 
4 0.188 
5 0.16 
6 0.139 
7 0.122 
8 0.109 
9 0.0987 

10 0.09 
12 0.076 
14 0.066 
16 0.059 
18 0.052 
20 0.0475 
30 0.032 
40 0.024 
50 0.0196 
100 0.0099 
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Fig. 2.  Top: Magnetization vs β . Bottom: Normalized magnetization vs α, a quantity proportional to 
temperature.  This is the characteristic ferromagnetic phase transition curve.  The value of alpha where M 
reaches zero defines the Curie temperature. 


