## Homework 2 Solutions

## 1. Diamagnetic susceptibility of atomic hydrogen:

Wave function $\psi=\frac{1}{\sqrt{\pi a_{0}^{3}}} e^{-r / a_{0}} \quad a_{0}=0.529 \AA$
The appropriate expression for atomic diamagnetic susceptibility is:

$$
\chi_{m} \equiv \frac{\vec{M}}{\vec{H}}=\frac{n|\langle\vec{m}\rangle|}{|\vec{B}| / \mu_{0}}=-\frac{\mu_{0} n e^{2}}{6 m_{e}}\langle r\rangle^{2}
$$

where n is the number of atoms N per unit volume V .

$$
<r^{2}>=<\psi_{0}\left|r^{2}\right| \psi_{0}>=\frac{1}{\pi a_{0}^{3}} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} e^{-r / a_{0}} r^{2} e^{-r / a_{0}} r^{2} \sin \theta d r d \theta d \phi
$$

can immediately integrate over? and f to get

$$
\begin{gathered}
\left.<r^{2}\right\rangle=\frac{4}{a_{0}^{3}} \int_{0}^{\infty} r^{4} e^{-2 r / a_{0}} d r \ldots \ldots .\left\{\text { let } u=2 r / a_{0}, d u=2 d r / a_{0} .\right. \\
<r^{2}>=\frac{4}{a_{0}^{3}}\left(\frac{a_{0}}{2}\right) \int_{0}^{\infty} u^{4} e^{-u} d u=a_{0}^{2} \frac{4(4!)}{2^{5}}=3 a_{0}^{2} \\
\chi=\frac{-n \mu_{0}\left(1.6 \times 10^{-19}\right)^{2} \cdot 3\left(0.53 \times 10^{-10}\right)^{2}}{6\left(9.11 \times 10^{-31}\right)}=-\frac{N}{V}\left(5.0 \times 10^{-35}\right)=[\mathrm{MKSA}]
\end{gathered}
$$

Let $\mathrm{N}=$ Avogadro's number $=6.02 \times 10^{23}$ atoms $/$ mole .

$$
\Rightarrow \chi=-3.0 \times 10^{-11} / V \text { where } \mathrm{V} \text { is the volume of the } 1 \text {-mole sample in } \mathrm{m}^{3} .
$$

2. Heat capacity from internal degrees of freedom, energy splitting $\Delta \cdot k_{B}$
(a) By Maxwell Boltzmann Statistics

$$
<U>=\frac{U_{1} e^{-U_{1} / k T}+U_{2} e^{-U_{2} / k_{B} T}}{e^{-U_{1} / k_{B} T}+e^{-U_{2} / k_{B} T}}
$$



Fig. 1
Set $\mathrm{U}_{1}$ (arbitrarily) to zero so that $\mathrm{U}_{2}=\mathrm{k}_{\mathrm{B}} \Delta$.

$$
\begin{gathered}
<U>=\frac{k_{B} \Delta e^{-k_{B} \Delta / k_{B} T}}{1+e^{-k_{B} \Delta / k_{B} T}}=\frac{k_{N} \Delta e^{-\Delta / T}}{1+e^{-\Delta / T}} \\
C_{0}=\frac{d<U>}{d T}=\frac{\left(1+e^{-\Delta / T}\right)\left(\frac{+\Delta k_{B} \Delta}{T^{2}}\right) e^{-\Delta / T}-\left(k_{B} \Delta e^{-\Delta / T}\right)\left(\frac{+\Delta}{T^{2}}\right) e^{-\Delta / T}}{\left(1+e^{-\Delta / T}\right)^{2}} \\
C_{v}=\frac{+k_{B} \Delta^{2} e^{-\Delta / T} / T^{2}}{\left(1+e^{-\Delta / T}\right)^{2}}=\frac{k_{B}(\Delta / T)^{2} e^{-\Delta / T}}{\left(1+e^{-\Delta / T}\right)^{2}}=\frac{k_{B}(\Delta / T)^{2} e^{\Delta / T}}{\left(e^{\Delta / T}+1\right)^{2}}
\end{gathered}
$$

(b) The plot of the heat capacity in (a) is shown below. By graphical means, we determine that the maximum in $\mathrm{C}_{\mathrm{V}}$ occurs at a value of $\Delta / \mathrm{T}=2.06$

## 3. Langevin model of Paramagnetism

(a) For the classical magnetic dipole, we have $\boldsymbol{U}_{\boldsymbol{m}}=-\overrightarrow{\boldsymbol{m}}_{0} \cdot \overrightarrow{\boldsymbol{B}}_{\text {local }}$. Without loss of generality we can choose $B_{\text {local }}$ (henceforth written as $B_{L}$ ) along the $z$ axis in a spherical coordinate system, so that $U_{m}=-$ $\mathrm{m}_{0} \mathrm{~B}_{\mathrm{L}} \cos \theta$. The probability phase space is defined simply by the solid angle since the dipole can be
pointed anywhere along a direction $\theta, \phi$. The probability of pointing in a certain direction is dictated by the Boltzmann ansatz,

$$
\boldsymbol{f}(\theta, \phi)=\frac{\left.\exp \left[-\boldsymbol{U}(\theta, \phi) / \boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T}\right)\right]}{\int_{0}^{4 \pi} \exp \left[-\boldsymbol{U}(\theta, \phi) / \boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T}\right] \boldsymbol{d} \Omega}=\frac{\left.\exp \left[\boldsymbol{m}_{0} \boldsymbol{B}_{L} \cos \theta / \boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T}\right)\right]}{\int_{0}^{4 \pi} \exp \left[\boldsymbol{m}_{0} \boldsymbol{B}_{L} \cos \theta / \boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T}\right] d \Omega}
$$

where $\mathrm{d} \Omega$ is the differential solid angle, $\mathrm{d} \Omega=\sin \theta \mathrm{d} \theta \mathrm{d} \phi .$. It also allows us to treat the dipole using the inherently random radial unit vector in spherical coordinates,

$$
\overrightarrow{\boldsymbol{m}}=\boldsymbol{m}_{0} \hat{\boldsymbol{r}}=\boldsymbol{m}_{0}(\hat{\boldsymbol{x}} \sin \theta \cos \varphi+\hat{\boldsymbol{y}} \sin \theta \sin \varphi+\hat{z} \cos \theta)
$$

This by statistical principles, we can write the mean value of the magnetic dipole moment:

$$
<\overrightarrow{\boldsymbol{m}}>=\frac{\left.\int_{0}^{2 \pi} \int_{0}^{\pi} \boldsymbol{m}_{0}(\hat{\boldsymbol{x}} \sin \theta \cos \varphi+\hat{\boldsymbol{y}} \sin \theta \sin \varphi+\hat{\boldsymbol{z}} \cos \theta) \exp \left[\boldsymbol{m}_{0} \boldsymbol{B}_{\boldsymbol{L}} \cos \theta\right) / \boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T}\right] \sin \theta d \theta d \phi}{\int_{0}^{2 \pi} \int_{0}^{\pi} \exp \left[\boldsymbol{m}_{0} \boldsymbol{B}_{\boldsymbol{L}} \cos \theta / \boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T}\right] \sin \theta d \theta d \phi}
$$

Clearly the terms in the numerator that include the x and y unit vectors vanish since they involve integrating $\cos \phi$ or $\sin \phi$ from 0 to $2 \pi$. The term containing the z unit vector can be evaluated through the substitution $\mathrm{W}=\mathrm{m}_{0} \mathrm{~B}_{\mathrm{I}} / \mathrm{k}_{\mathrm{B}} \mathrm{T}$.

$$
\begin{equation*}
<\overrightarrow{\boldsymbol{m}}>=\frac{\int_{0}^{\pi} \boldsymbol{m}_{0}(\hat{z} \cos \theta) \exp [\boldsymbol{W} \cos \theta] \sin \theta d \theta}{\int_{0}^{\pi} \exp [\boldsymbol{W} \cos \theta] \sin \theta d \theta} \tag{1}
\end{equation*}
$$

Evaluation of the denominator leads to

$$
\begin{equation*}
\int_{0}^{\pi} \exp [\boldsymbol{W} \cos \theta] \sin \theta d \theta=-\left.\frac{\exp (\boldsymbol{W} \cos \theta)}{\boldsymbol{W}}\right|_{0} ^{\pi}=\frac{2}{\boldsymbol{W}} \sinh \boldsymbol{W} \tag{2}
\end{equation*}
$$

The numerator is a bit more work, requiring integration by parts. We set $\mathrm{U}=\cos \theta \mathrm{d} \theta$ and $\mathrm{dV}=$ $\sin \theta \exp (\mathrm{W} \cos \theta)$, and get $\mathrm{dU}=-\sin \theta \mathrm{d} \theta$ and $\mathrm{V}=-\exp (\mathrm{W} \cos \theta) / \mathrm{W}$

$$
\begin{gather*}
\int_{0}^{\pi} \boldsymbol{m}_{0}(\hat{z} \cos \theta) \exp [\boldsymbol{W} \cos \theta] \sin \theta d \theta d \phi=\left.\boldsymbol{U} \boldsymbol{V}\right|_{0} ^{\pi}-\int_{0}^{\pi} \boldsymbol{V} d \boldsymbol{U} \\
\left.\boldsymbol{U} \cdot \boldsymbol{V}\right|_{0} ^{\pi}=\left.\frac{-\cos \theta}{\boldsymbol{W}} \exp (\boldsymbol{W} \cos \theta)\right|_{0} ^{\pi}=\frac{\boldsymbol{e}^{-\boldsymbol{W}}}{\boldsymbol{W}}+\frac{\boldsymbol{e}^{\boldsymbol{W}}}{\boldsymbol{W}}=\frac{2}{\boldsymbol{W}} \cosh \boldsymbol{W}  \tag{3}\\
\text { and } \quad-\int_{0}^{\pi} \boldsymbol{V} d \boldsymbol{U}=-\int_{0}^{\pi} \frac{\sin \theta}{\boldsymbol{W}} \exp (\boldsymbol{W} \cos \theta) \boldsymbol{d} \theta=\left.\frac{\exp (\boldsymbol{W} \cos \theta)}{\boldsymbol{W}^{2}}\right|_{0} ^{\pi}=\frac{\boldsymbol{e}^{-\boldsymbol{W}}}{\boldsymbol{W}^{2}}-\frac{\boldsymbol{e}^{\boldsymbol{W}}}{\boldsymbol{W}^{2}}=\frac{-2 \sinh \boldsymbol{W}}{\boldsymbol{W}^{2}} \tag{4}
\end{gather*}
$$

Summing (3) and (4), dividing by (2), and substitution into (1) yields

$$
\begin{gathered}
<\overrightarrow{\boldsymbol{m}}>=\frac{\boldsymbol{m}_{0} \hat{z}\left[(2 / \boldsymbol{W}) \cosh \boldsymbol{W}-\left(2 / \boldsymbol{W}^{2}\right) \sinh \boldsymbol{W}\right.}{(2 / \boldsymbol{W}) \sinh \boldsymbol{W}}=\boldsymbol{m}_{0} \hat{z}[\operatorname{coth} \boldsymbol{W}-(1 / \boldsymbol{W})] \\
<\overrightarrow{\boldsymbol{m}}>=\boldsymbol{m}_{0} \hat{z}\left[\operatorname{coth}\left(\boldsymbol{m}_{0} \boldsymbol{B}_{L} / \boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T}\right)-\left(\boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T} / \boldsymbol{m}_{0} \boldsymbol{B}_{L}\right)\right]
\end{gathered}
$$

This is the famous Langevin function
(b) If there are n such dipoles per unit volume, the mean magnetization becomes

$$
\begin{equation*}
<\vec{M}\rangle=n<\vec{m}\rangle=n \cdot m_{0} \hat{z}\left[\operatorname{coth}\left(m_{0} B_{L} / \boldsymbol{k}_{B} T\right)-\left(\boldsymbol{k}_{B} T / \boldsymbol{m}_{0} B_{L}\right)\right] \tag{5}
\end{equation*}
$$

In the limit of high temperature, it is easy to show that the Taylor's series of $\operatorname{coth}(\mathrm{x})$ for small x is

$$
\operatorname{coth}(x)=1 / x+x / 3+\ldots
$$

The first term of this cancels the last term in (5), so that

$$
<\overrightarrow{\boldsymbol{M}}>\approx \boldsymbol{n} \cdot \boldsymbol{m}_{0}\left(\frac{\boldsymbol{m}_{0} \boldsymbol{B}_{L}}{\boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T}}\right) \hat{z}
$$

The high temperature limit of the paramagnetic susceptibility is

$$
\chi_{m} \equiv \frac{|\overrightarrow{\boldsymbol{M}}|}{|\overrightarrow{\boldsymbol{H}}|}=\frac{|\overrightarrow{\boldsymbol{M}}|}{|\overrightarrow{\boldsymbol{B}}| / \mu_{0} \mid}=\left(\frac{\boldsymbol{n} \boldsymbol{m}_{0}^{2} \mu_{0}}{\boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T}}\right)
$$

## 4. Curie-Weiss-Heisenberg Model of Ferromagnetism

(a) If $\overrightarrow{\boldsymbol{B}}_{\text {local }}=\overrightarrow{\boldsymbol{B}}_{\text {in }}+\gamma \mu_{0} \overrightarrow{\boldsymbol{M}}$, then by inserting (5) from above, we can write

$$
\overrightarrow{\boldsymbol{B}}_{\text {local }} \equiv \overrightarrow{\boldsymbol{B}}_{L}=\overrightarrow{\boldsymbol{B}}_{\text {in }}+\gamma \mu_{0} \boldsymbol{n} \overrightarrow{\boldsymbol{m}}=\overrightarrow{\boldsymbol{B}}_{\text {in }}+\gamma \mu_{0} \boldsymbol{n} \cdot \boldsymbol{m}_{0} \hat{z}\left[\operatorname{coth}\left(\boldsymbol{m}_{0} \boldsymbol{B}_{L} / \boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T}\right)-\left(\boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T} / \boldsymbol{m}_{0} \boldsymbol{B}_{L}\right)\right]
$$

This can be re-written as

$$
\begin{equation*}
\boldsymbol{B}_{L}=\boldsymbol{B}_{\boldsymbol{i n}}+\gamma \mu_{0} \boldsymbol{n} \cdot \boldsymbol{m}_{0}\left[\operatorname{coth}\left(\boldsymbol{m}_{0} \boldsymbol{B}_{L} / \boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T}\right)-\left(\boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T} / \boldsymbol{m}_{0} \boldsymbol{B}_{L}\right)\right] \tag{7}
\end{equation*}
$$

since $\mathrm{B}_{\mathrm{L}}$ and $\mathrm{B}_{\mathrm{in}}$ are both along the z axis. Eqn (7) is an implicit equation in $\mathrm{B}_{\mathrm{L}}$ since $\mathrm{B}_{\mathrm{L}}$ occurs on both sides and can not be isolated.
(b) Eqn (7) can be solved uniquely for $\mathrm{B}_{\mathrm{L}}$ in the case of spontaneous magnetization, which means that $B_{L} \neq 0$ even when $B_{i n}=0$. From such a solution, we can get $M$ through $M=B_{L} /\left(\gamma \mu_{0}\right)$. To proceed we re-write (7) using $\beta=\mathrm{m}_{0} \mathrm{~B}_{\mathrm{L}} / \mathrm{k}_{\mathrm{B}} \mathrm{T}$, under the spontaneous condition:

$$
\boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T} \beta / \boldsymbol{m}_{0}=\gamma \mu_{0} \boldsymbol{n} \cdot \boldsymbol{m}_{0}[\operatorname{coth}(\beta)-(1 / \beta)]
$$

or

$$
\begin{equation*}
\boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T} \beta /\left(\boldsymbol{n} \gamma \mu_{0} \boldsymbol{m}_{0}^{2}\right) \equiv \alpha \cdot \beta=[\operatorname{coth}(\beta)-(1 / \beta)] \tag{8}
\end{equation*}
$$

where $\alpha$ defines the quantity $\mathrm{k}_{\mathrm{B}} \mathrm{T} /\left[\mathrm{r} \gamma \mu_{0}\left(\mathrm{~m}_{0}\right)^{2}\right]$. This can be solved implicitly using Excel, for example, or some other graphics tool. The solution table is shown on the attached page. The solution for $\alpha$ as $\beta$ goes to zero is simply $\alpha=0.333$.

This might look like pure math until we recognize that since $M=B_{L} /\left(\gamma \mu_{0}\right)$, and $\beta=m_{0} B_{L} / k_{B} T$, we can express M in the temperature independent form,

$$
\begin{equation*}
\boldsymbol{M}=\frac{\boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T} \beta}{\boldsymbol{m}_{0} \gamma \mu_{0}}=\frac{\boldsymbol{n} \gamma \mu_{0} \boldsymbol{m}_{0}^{2} \alpha \cdot \boldsymbol{\beta}}{\boldsymbol{m}_{0} \gamma \mu_{0}}=\boldsymbol{n} \boldsymbol{m}_{0} \alpha \beta \tag{9}
\end{equation*}
$$

In Fig. 2 we plot the quantity $\mathrm{M} /\left(\mathrm{nm}_{0}\right)=\alpha \cdot \beta$ vs both $\beta$ and $\alpha$. When plotted vs $\beta$, we see the vanishing of M as $\beta$ goes to zero consistent with the first step of Eqn (9). When plotted vs $\alpha$, we see something even more interesting - the ferromagnetic phase transition curve. The value of $\alpha$ where M reaches zero defines the Curie temperature, $\mathrm{T}_{\mathrm{C}}$, as will be quantified in (c) below.
(c) By definition, $\mathrm{T}_{\mathrm{C}}$ can be found from the value of $\alpha$ that make M go to zero. Specifically, it is the (maximum) value of $\alpha$ that solves Eqn (8) as $\beta$ goes to 0 . From the table below, this is $\alpha=0.333$. But we also know $\alpha=k_{B} T /\left[\mathrm{m} \gamma \mu_{0}\left(m_{0}\right)^{2}\right]$. So we can write

$$
\begin{equation*}
\mathrm{T}_{\mathrm{C}}=\alpha_{\max } \mathrm{m} \gamma \mu_{0}\left(\mathrm{~m}_{0}\right)^{2} / \mathrm{k}_{\mathrm{B}} . \tag{10}
\end{equation*}
$$

To estimate n , it is good to start with iron, a bcc solid with lattice constant 2.87 Angstrom and, therefore, an atomic concentration of $2 /(2.87 \mathrm{Ang})^{3}=8.5 \times 10^{28} \mathrm{~m}^{-3}$. And we assume there is one magnetic moment per atom. Thus, if $m_{0}=\mu_{\mathrm{B}}=9.27 \times 10^{-24}$ [MKSA], and we set $\mathrm{T}_{\mathrm{C}}=300 \mathrm{~K}$, we can solve for $\gamma=1355$, which is not much higher than expected. Putting in a more realistic value of $m_{0}$ would decrease this quadratically as seen from (10) above.

| Solution table |  |
| :---: | :---: |
| $\beta$ | $\alpha$ |
| 0.1 | 0.333 |
| 0.2 | 0.332 |
| 0.3 | 0.331 |
| 0.4 | 0.33 |
| 0.5 | 0.328 |
| 0.6 | 0.325 |
| 0.7 | 0.323 |
| 0.8 | 0.32 |
| 0.9 | 0.3165 |
| 1 | 0.313 |
| 2 | 0.269 |
| 3 | 0.224 |
| 4 | 0.188 |
| 5 | 0.16 |
| 6 | 0.139 |
| 7 | 0.122 |
| 8 | 0.109 |
| 9 | 0.0987 |
| 10 | 0.09 |
| 12 | 0.076 |
| 14 | 0.066 |
| 16 | 0.059 |
| 18 | 0.052 |
| 20 | 0.0475 |
| 30 | 0.032 |
| 40 | 0.024 |
| 50 | 0.0196 |
| 100 | 0.0099 |



Fig. 2. Top: Magnetization vs $\beta$. Bottom: Normalized magnetization vs $\alpha$, a quantity proportional to temperature. This is the characteristic ferromagnetic phase transition curve. The value of alpha where M reaches zero defines the Curie temperature.

