Homework #3 (Kinetic Theory)

1. (Hall effect): The semiconductor parallelapiped of dimensions I_x , L_y , and L_z (see figure below) has a carrier density ρ_c and is subject to a bias voltage V_x and current I_x along the x axis and a uniform magnetic field B_0 along the z axis. Under these conditions, a voltage V_y is induced along the y axis, although no current flows. Assuming uniform fields along the x and y axes and one carrier type, determine the following:

- a) Starting with the kinetic equations of motion for a carrier of mass m_e and relaxation time τ , derive an expression for V_y in terms of V_x , B_0 , τ , and m_e .
- b) Re-derive an expression for V_y in terms of I_x , B_0 , and ρ_c .
- c) Suppose in an experiment we have $L_x = 1$ cm, $L_y = L_z = 1$ mm, $B_0 = 0.1$ T, $V_x = 1.0$ V and $V_y = +5$ mV, find the carrier charge polarity and mobility (MKSA units)

2. (Magnetoconductivity): a). Use the kinetic theory to show that in the presence of a magnetic field B, the static current density can be written in matrix form as

$$\begin{pmatrix} J_{X} \\ J_{Y} \\ J_{Z} \end{pmatrix} = \frac{\boldsymbol{s}_{0}}{1 + (\boldsymbol{w}_{C}\boldsymbol{t})^{2}} \begin{pmatrix} 1 & -\boldsymbol{w}_{c}\boldsymbol{t} & 0 \\ \boldsymbol{w}_{c}\boldsymbol{t} & 1 & 0 \\ 0 & 0 & 1 + (\boldsymbol{w}_{C}\boldsymbol{t})^{2} \end{pmatrix} \begin{pmatrix} E_{X} \\ E_{Y} \\ E_{Z} \end{pmatrix}$$

b). In the high magnetic field limit of $\omega_C \tau >> 1$, show that $\sigma_{XY} = ne/B = -\sigma_{XY}$ where σ_{XY} is called the Hall conductivity

3. (Joule heating):

Consider a metal at uniform temperature in a static electric field **E**. An electron experiences a collision, and then, after a time t, a second collision. In the Drude model energy is not conserved in collisions, since the mean speed of an electron emerging from a collision does not depend on the energy acquired from the field since the preceding collision.

- (a) Show that the average energy lost to the ions in the second of two collisions separated by a time t is $(eEt)^2/2m$. (The average is over all directions in which the electron emerged from the first collision).
- (b) Show that the average energy loss to the ions per collision is $(E\tau)^2/2m$ using the fact that the probability of collision between t and $t + dt = P(t,dt) = dt e^{-t/\tau} / \tau$. Hence, show that the average loss per cubic centimeter per second is $(ne^2t/m)E^2 = sE^2$. Deduce that the power loss in a wire of length L and cross section A is I²R, where I is the current flowing and R is the resistance of the wire.