Homework 4 Solutions

1) Hall Effect

(a) Newton's equation with scattering (relaxation time approximation)

$$
\begin{array}{r}
m \dot{\vec{v}}+m \vec{v} / \tau=\vec{F}=q(\vec{E}+\vec{v}+\vec{B}) \\
\vec{v} \times \vec{B}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
v_{x} & v_{y} & v_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|=\begin{array}{c}
\hat{x}\left(v_{y} B_{z}-v_{z} B_{y}\right) \\
+\hat{y}\left(v_{z} B_{x}-v_{x} B_{z}\right) \\
+\hat{z}\left(v_{x} B_{y}-v_{y} B_{x}\right)
\end{array}
\end{array}
$$

In steady state, $m(d \vec{v} / d t)=0$, so that

$$
\begin{gathered}
v_{x}=\frac{q \tau}{m}\left(E_{x}+v_{y} B_{z}-v_{z} B_{y}\right) ; \quad v_{y}=\frac{q \tau}{m}\left(E_{y}+v_{z} B_{x}-v_{x} B_{z}\right) ; \\
v_{z}=\frac{q \tau}{m}\left(E_{z}+v_{x} B_{y}-v_{y} B_{x}\right)
\end{gathered}
$$

In the special geometry of the Hall sample, $B_{z}=B_{0} ; B_{x}=B_{y}=0$. In kinetic theory $J_{x}=n q v_{x}, J_{y}=n q v_{y}, J_{z}=n q v_{z}$ (current density components) where n is the carrier density.

Therefore, in the Hall geometry, $J_{y}=0 \Rightarrow v_{y}=0, J_{z}=0 \Rightarrow v_{z}=0$, and we get

$$
\begin{gather*}
v_{x}=\frac{q \tau}{m}\left(E_{x}\right) \tag{1}\\
0=\frac{q \tau}{m}\left(E_{y}-v_{x} B_{0}\right) \tag{2}\\
0=\frac{q \tau}{m}\left(E_{z}\right) \tag{3}\\
(2) \Rightarrow E_{y}=v_{x} B=\frac{q \tau}{m} E_{x} B_{0} \Rightarrow V_{y}=L_{y} \frac{q \tau V_{x}}{m L_{x}} B_{0} \tag{4}\\
E_{x}=\frac{m v_{x}}{q \tau}=\frac{m J_{x}}{q \tau n q} . \tag{5}
\end{gather*}
$$

So we can write

$$
V_{y}=L_{y} \frac{q \tau}{m} \frac{m J_{x} B}{q \tau n q}=\frac{I_{x} B_{0}}{L_{z} n q} .
$$

(c) For the specific geometry $L_{x}=1 \mathrm{~cm}, L_{y}=L_{z}=1 \mathrm{~mm}$, and $V_{y}=+5 \mathrm{mV}$, as defined in the figure so that the electric potential decreases in going from small y to larger $y \Rightarrow E_{y}=-d \phi / d y$ is positive. Since E_{y} and E_{x} are both positive, we must take positive sign in equation (4), so that the carriers must have a positive charge (e.g., holes). For the geometry at hand and assuming uniform fields,

$$
\begin{aligned}
& V_{x}=E_{x} L_{x} \text { or } E_{x}=1 \mathrm{~V} / \mathrm{cm} \quad V_{y}=E_{y} L_{y} \text { or } E_{y}=0.05 \mathrm{~V} / \mathrm{cm} \\
& \therefore \mu \square \frac{e \tau}{m}=\frac{E_{y} / E_{x}}{B}=\frac{0.05}{0.1}=0.5 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}=5000 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}
\end{aligned}
$$

2. Magnetoconductivity in Three Dimensions

In class we derived the following set of equations for kinetic motion of charge carriers in magnetic and electric field along z axis.

$$
\begin{equation*}
v_{x}=\left(\mu E_{x}+\omega_{c} \tau v_{y}\right) \frac{q}{e}(1) ; \quad v_{y}=\left(\mu E_{y}-\omega_{c} \tau v_{x}\right) \frac{q}{e}(2) ; \quad v_{z}=\left(\mu E_{z}\right) \frac{q}{e} \tag{3}
\end{equation*}
$$

where $\omega_{c}=\frac{q B}{m}$ is the cyclotron resonance (circular) frequency.
We use (1) and (2) to solve uniquely for v_{x} and v_{y}.
$(2) \rightarrow(1) \Rightarrow v_{x}=\frac{q}{e}\left(\mu E_{x}\right)+\omega_{c} \tau\left[\mu E_{y}-\omega_{c} \tau v_{x}\right] \frac{q^{2}}{e _{1}}$
or

$$
\begin{aligned}
v_{x}\left[1+\left(\omega_{c} \tau\right)^{2}\right] & =\frac{q}{e} \mu E_{x}+\omega_{c} \tau \mu E_{y} \\
J_{x}=n q v_{x} & =\frac{n \frac{q^{2}}{e x} E_{x}+\omega_{c} \tau n q \mu E_{y}}{e} 1+\left(\omega_{c} \tau\right)^{2}
\end{aligned}
$$

but $\sigma_{0} \equiv n e \mu$ (dc conductivity) so

$$
\begin{equation*}
J_{x}=\frac{\sigma_{0}}{1+\left(\omega_{c} \tau\right)^{2}}\left(E_{x}+\omega_{c} \tau E_{y}\left(\frac{q}{e}\right)\right) \tag{4}
\end{equation*}
$$

$(1) \rightarrow(2) \Rightarrow v_{y}=\frac{q}{e} \mu E_{y}-\omega_{c} \tau\left[\mu E_{x}+\omega_{c} \tau v_{y}\right] \frac{q^{2}}{e^{2}}$
or

$$
\begin{array}{r}
v_{y}=\left[1+\left(\omega_{c} \tau\right)^{2}\right]=\frac{q}{e} \mu E_{y}-\omega_{c} \tau \mu E_{x} \\
J_{y}=n q v_{y}=\frac{\sigma_{0}}{1+\left(\omega_{c} \tau\right)^{2}}\left(-\omega_{c} \tau E_{x} \frac{q}{e}+E_{y}\right) \\
(3) \Rightarrow J_{z}=n q v_{z}=\left(\frac{q}{e}\right) n q \mu E_{z} \equiv \sigma_{0} \frac{1+\left(\omega_{c} \tau\right)^{2}}{1+\left(\omega_{c} \tau\right)^{2}} E_{z} \tag{6}
\end{array}
$$

We can combine (4), (5), and (6) in matrix form as

$$
\left(\begin{array}{l}
J_{x} \\
J_{y} \\
J_{z}
\end{array}\right)=\frac{\sigma_{0}}{1+\left(\omega_{c} \tau\right)^{2}}\left(\begin{array}{ccc}
1 & \frac{q}{e} \omega_{c} \tau & 0 \\
-\frac{q}{e} \omega_{c} \tau & 1 & 0 \\
0 & 0 & 1+\left(\omega_{c} \tau\right)^{2}
\end{array}\right)\left(\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right)
$$

In the high magnetic-field limit $\omega_{c} \tau \gg 1$,

$$
\begin{aligned}
& \sigma_{y x}=\frac{-\frac{q}{e} \sigma_{0} \omega_{C} \tau}{1+\left(\omega_{c} \tau\right)^{2}} \rightarrow \frac{-\frac{q}{e} \sigma_{0}}{\omega_{c} \tau}=\frac{-q m n e^{2} \tau}{e m e B \tau}=\frac{-n q}{B} \rightarrow \frac{n e}{B} \text { for electrons } \\
& \sigma_{x y}=\frac{(q / e) \sigma_{0} \omega_{c} \tau}{1+\left(\omega_{c} \tau\right)^{2}} \rightarrow \frac{(q / e) \sigma_{0}}{\omega_{C} \tau}=\frac{n q}{B} \rightarrow \frac{-n e}{B} \text { for electrons }
\end{aligned}
$$

In the same limit:

$$
\sigma_{x x}=\frac{\sigma_{0}}{1+\left(\omega_{c} \tau\right)^{2}} \rightarrow \frac{\sigma_{0}}{\left(\omega_{c} \tau\right)^{2}} \rightarrow \frac{n e^{2} \tau m^{2}}{(e B)^{2} \tau^{2} m}
$$

or

$$
\sigma_{x X}=\frac{n m}{\tau B^{2}}=\frac{q n}{\omega_{c} \tau B} \rightarrow 0 \quad \text { in high B-field limit }
$$

3. Joule Heating

(a) From basic assumptions of kinetic theory, collisions are randomizing and leave the scattered particle with a mean velocity appropriate to the temperature around the scattering center. Hence if consecutive scattering events occur close enough that the temperature is the same, then all of the kinetic energy gained between collisions is transferred to the ions upon the second collision. In the absence of an electric field, the velocity vector emerging from first collision can be written as the isotropic velocity

$$
\vec{v}=v_{0} \hat{r}_{0}=v_{0}(\hat{x} \sin \theta \cos \phi+\hat{y} \sin \theta \sin \phi+\hat{z} \cos \theta)
$$

where θ, ϕ are the polar and azimuthal angles in spherical coordinates..
In the presence of an electric field along the z axis, the z component of velocity has a term that increases linearly with time (solution to Newton's equation).

Fig. 1.

$$
v_{z}=v_{0}+\frac{q E_{0} t}{m} ; \vec{E}=E_{0} \hat{z}
$$

So, $\quad \vec{v}=v_{0} \sin \theta \cos \phi \cdot \hat{x}+v_{0} \sin \theta \sin \phi \cdot \hat{y}+\left(v_{0} \cos \theta+\frac{q E_{0} t}{m}\right) \cdot \hat{z}$
To calculate how much energy is gained between collisions, we first have to spatially average over all possible angles (overbar denotes spatial average):

$$
\overline{\vec{v}}=\frac{\int \vec{v} d \Omega}{\int d \Omega}=\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{\vec{v} \sin \theta d \theta d \phi}{4 \pi}
$$

The first (zero field term) from (1) yields

$$
\overline{\vec{v}}_{1}=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi}\left(v_{0} \sin \theta \cos \phi \cdot \hat{x}+v_{0} \sin \theta \sin \phi \cdot \hat{y}+v_{0} \cos \theta \cdot \hat{z}\right) \sin \theta d \theta d \phi=0
$$

The second term (electric field term) is

$$
\begin{gathered}
\overline{\vec{v}}_{2}=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi}\left(\frac{q E_{0} t}{m}\right) \hat{z} \sin \theta d \theta d \phi=\left.\frac{\hat{z}}{2} \frac{q E_{0} t}{m}(-\cos \theta)\right|_{0} ^{\pi}=\hat{z} \frac{q E_{0} t}{m} \\
U_{K}^{*}=\frac{1}{2} m|\overrightarrow{\vec{v}}|_{2}^{2}=\frac{m}{2}\left(\frac{q E_{0} t}{m}\right)^{2}=\frac{1}{2} \frac{\left(q E_{0} t\right)^{2}}{m}
\end{gathered}
$$

where $\mathrm{U}^{*}{ }_{K}$ denotes the average single-particle kinetic energy and the \| d denotes the vector magnitude operation.
(b) We can combine this space-averaged kinetic energy with the normalized probability, $P(t+d t)$ that a collision occurs between t and $\mathrm{t}+\mathrm{dt}: e^{-\mathrm{t} / \tau} d t / \tau$:

$$
\begin{aligned}
<U_{K}^{*} & >=\int_{0}^{\infty} U_{K}^{*} P(t, d t) d t=\int_{0}^{\infty} \frac{1}{2} \frac{q E_{0} t^{2}}{m} \frac{e^{-t / \tau} d t}{\tau} \\
& <U_{K}^{*}>=\left(\frac{q E_{0} t}{m}\right)^{2} \frac{1}{2 \tau} \int_{0}^{\infty} t^{2} e^{-t / \tau} d t
\end{aligned}
$$

We integrate $\int_{0}^{\infty} t^{2} e^{-t / \tau} d t$ by parts twice (or look in integral tables) and we find

$$
\begin{aligned}
& \int_{0}^{\infty} t^{2} e^{-t / \tau} d t=2 \tau^{3} \text {. So } \\
& \qquad \quad<U_{K}^{*}>=\left(\frac{q E_{0}}{m}\right)^{2} \frac{2 \tau^{3}}{2 \tau}=\frac{\left(q E_{0} \tau\right)^{2}}{m}
\end{aligned}
$$

which is the energy loss per electron per collision. It is useful to do a dimensional analysis:

$$
\begin{aligned}
\frac{\text { Energy loss }}{\mathrm{cm}^{3}-\mathrm{sec}} & =\frac{\text { Energy loss }}{\text { electron }- \text { collision }} \cdot \frac{\text { electrons }}{\mathrm{cm}^{3}} \cdot \frac{\text { collisions }}{\mathrm{sec}} \\
" \quad " \quad & =\frac{\left(q E_{0} \tau\right)^{2}}{m} \cdot n \cdot \frac{1}{\tau} \\
، \quad \quad " \quad & =\frac{n q^{2} \tau}{m} \cdot E_{0}^{2}=\sigma E^{2} \text { Joule Heat }
\end{aligned}
$$

To calculate the power loss in a wire length L and cross section A , we integrate over the volume

$$
P_{L}=\int \sigma E^{2} d V=\sigma E^{2} \int d V=\sigma E^{2} L \cdot A(\text { assuming } \mathrm{E} \text { is uniform in wire })
$$

We can rewrite this as $P_{L}=\frac{\sigma^{2}}{\sigma} E^{2} L \frac{A^{2}}{A}=(\sigma E A)^{2}\left(\frac{L}{\sigma A}\right)=\left(J^{2} A^{2}\right)\left(\frac{\rho L}{A}\right)$
or

$$
P_{L}=I^{2} R
$$

