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Homework 4 Solutions 
 

1) Hall Effect 

(a) Newton’s equation with scattering (relaxation time approximation) 
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In steady state, ( / ) 0m dv dt =
r

 , so that 
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In the special geometry of the Hall sample, 0 ; 0z x yB B B B= = = .  In kinetic theory 

, ,x x y y z zJ nq J nq J nqυ υ υ= = = (current density components) where n is the carrier density.  

Therefore, in the Hall geometry,  00 0, 0y y zJ J zυ υ == ⇒ = = ⇒ , and we get  
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So we can write   
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(c) For the specific geometry Lx = 1 cm, Ly = Lz = 1 mm, and Vy = +5 mV, as defined in the 

figure so that the electric potential decreases in going from small y to larger y ⇒ Ey = -dφ/dy is 

positive.  Since Ey and Ex are both positive, we must take positive sign in equation (4), so that 

the carriers must have a positive charge (e.g., holes).  For the geometry at hand and assuming 

uniform fields, 

1x x x xV E L or E V cm= =       0.05y y y yV E L or E V cm= =  
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2. Magnetoconductivity in Three Dimensions 
 
In class we derived the following set of equations for kinetic motion of charge carriers in 
magnetic and electric field along z axis. 
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where c
qB
m

ω =  is the cyclotron resonance (circular) frequency. 

We use (1) and (2) to solve uniquely for υx and υy.   
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but 0 neσ µ≡  (dc conductivity) so 
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We can combine (4), (5), and (6) in matrix form as  
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In the high magnetic-field limit cωτ >> 1, 
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or        2 0= = →
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3. Joule Heating 
 
(a) From basic assumptions of kinetic theory, collisions are randomizing and leave the scattered 

particle with a mean velocity appropriate to the temperature around the scattering center.  
Hence if consecutive scattering events occur close enough that the temperature is the same, 
then all of the kinetic energy gained between collisions is transferred to the ions upon the 
second collision.  In the absence of an electric field, the velocity vector emerging from first 
collision can be written as the isotropic velocity 

( )0 0 0ˆ ˆ ˆ ˆsin cos sin sin cos= = + +
r r x y zυ υ υ θ φ θ φ θ  

where θ,φ  are the polar and azimuthal angles in spherical coordinates.. 
In the presence of an electric field along the z axis, the z component of velocity has a term that 
increases linearly with time (solution to Newton’s equation). 
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To calculate how much energy is gained between collisions, we first have to spatially average 
over all possible angles (overbar denotes spatial average): 
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The first (zero field term) from (1) yields  
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Fig. 1. 
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 where U*K  denotes the average single-particle kinetic energy and the | | denotes the vector 
magnitude operation. 

(b) We can combine this space-averaged kinetic energy with the normalized probability, ( )P t dt+  

that a collision occurs between t and t + dt : /−te dtτ τ : 
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which is the energy loss per electron per collision.  It is useful to do a dimensional analysis: 
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To calculate the power loss in a wire length L and cross section A, we integrate over the volume 
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