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Homework#5 
 
Problem (1). Cyclotron resonance for spheroidal bands.  Consider the energy surface 
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where mT and mL are the transverse and longitudinal mass parameters, respectively.  That is, the 
surface of constant U is a spheroid.  Using the semiclassical equations of motion with 
p k= and 1( ) ( / )g nv U k−= ∂ ∂ and seeking an oscillatory solution with frequency ω for the 

crystal wave vector k of a given electron, show that ω = ωC = qB/(mLmT)1/2 when the static 
magnetic field lies in the x-y plane. 
 
Problem (2).  Semiclassical transport theory: Hall effect with two carrier types.   
Assume we have a solid with two partially-occupied bands about band extrema at k = 0.  The 
solid is contained in a parallelpiped sample with an electric field applied along the x axis and 
current density Jx along this axis, and the magnetic field B0 applied along the z axis with no 
current flowing along either the z or y axes.  Suppose the higher-energy (conduction) band has 

2 2 / 2e eU k m=  and the lower (valence) band has 2 2 / 2h hU k m= .  Using the semiclassical 
equations with k-independent relaxation times τe and τh,  show that the Hall coefficient (RH) is 
given by 
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where b = µe/µh .  (Clues: neglect terms of order B2; in the presence of the longitudinal bias field; 
find the transverse electric field by requiring the transverse current to vanish). 

 
 
Problem 3:  Electron-ionized-impurity scattering via the screened Coulomb potential 
(a) Assume that a solid contains a density of singly-ionized impurities that are screened by the 

background free-electron concentration such that the electronic potential energy is given by 
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where LD is the Debye screening length derived .  Use (3.1) to derive the following expression for 
the differential scattering cross section: 
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where θ is the scattering angle (polar angle of kf relative to ki), and β = 2kLD 
(b) Use (3.2) to derive the energy-dependent relaxation time: 
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(c) Use (3.3) and the solution to the Boltmann transport (low concentration) to write an 
expression for <τ> , the ensemble-averaged relaxation time 
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Problem 4:  Electron-acoustic-phonon scattering via the deformation potential 
As stated in class, one of the most useful applications of elasticity theory in semiconductor 
physics (and devices) is the Bardeen-Shockley theorem that relates the change in potential energy 
for carriers near band-edges to the strain through the relation: 

δUP = Ξ η 
where UP is the potential energy, η is the strain associated with a long-wavelength acoustical 
phonon (or lattice wave), and Ξ is the deformation-potential constant  - generally a known 
parameter for most important semiconductors and usually a surprisingly big number, ~ 10 eV. 
(a) Use the Bardeen-Shockley theorem to derive the form of the transition Hamiltonian , 
|Hk’,k| where k and k’ are the electron crystal wave vectors before and after the collision, 
respectively. 

(clue: use plane wave representation for the electronic Bloch waves, and for the phonon). 
(b) Use this |Hk’,k|  formula along with the expression derived in class for the momentum 
relaxation time (via Fermi’s Golden rule) to obtain the following expression for electron-
phonon scattering (acoustic phonons only) assuming low (non-degenerate) electron 
concentration (so the Maxwell-Boltzmann distribution is valid): 
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In this expression U is the electron kinetic energy, ρ is the solid density, vs is the speed of  
sound, and g is the electronic specific density-of-states in the conduction band where UC 
is the conduction band energy (at k = 0) and e is the strain.  Assume for this problem that 
Ξ is independent of direction in the crystal.   
 
(c) Use (4.1) and the solution to the semiclassical Boltzmann transport equation with 
uniform electric field applied to calculate the electronic mobility at 77 and 300 K 
assuming m = m* == 0.17 m0, and Ξ = 10 eV, ρ = 5.3 gm/cm3 and vs = 3000 m/s. 
 
 


