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Homework #5(a) Solutions

Problem 1. Cyclotron resonance in spheroidal band
dk e dU

We start with the semiclassical dynamic equation, dat = h ok X5 From the given spheroidal
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We seek oscillatory solutions in & space (would be oscillatory in real space too, but do not need that
for the present problem). Hence,
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We can write this in elegant matrix form as
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From linear algebra we know this matrix equation has non-trivial solutions for the column vector k
if and only if the matrix is singular, i.e., the determinant of the matrix vanishes. So
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The non-trivial solution comes from inside the parenthesis.
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Problem 2. Hall Effect with two carrier types and spherical bands
Semi-classical equations:
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In a steady state all time derivatives go to zero, so semi-classical equations become
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These is just six equations in six unknowns, kex’ key’ kez’khx’ khy ’khz' To solve, multiply

the first of set (1) by eB,T, / m: and add to the second of set (1). Then multiply the first of

set (2) by —eByz, / M, and add to the second of set (2). We get
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These can be rewritten as:
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Ignoring terms in By , we get
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Recall that the electron current in a given band is defined in the semiclassical model as
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Similarly, the hole electrical current is
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Since the net current along y axis is zero, we can write J,, +J, =0 or
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Solving for E, we get
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where ¢ " as in kinetic theory. Hence, we can write

(nu,+pu,) E, = B.E (—nul+pu;)

Ey _ —nﬂf+Pﬂf
E B, nu,+pu,

or



ECE215B/Materials206B ~ Fundamentals of Solids for Electronics E.R. Brown/Spring 2008

and H = ‘]xBO - e(o_e+o-h)ExBo where Ge = ne/“lea Gh = pe/“lh
2
SR 7 (p—n# ‘;j
_ TRM DM, Hi p—nb* p=Le
) = 7= 2 L —
Finally, H e(nue+p,uh) e,uz(p+nﬂe) = e(p+nb) . where *h
h

Hy

Important point: This result is valid for any orientation of B in x-y plane and independent of the
particle charge polarity. But the given form of spheroidal constant energy surface is only precise for
the electrons in the conduction band of indirect band-gap semiconductors, such as Si and Ge.



