
ECE215B/Materials206B      Fundamentals of Solids for Electronics        E.R. Brown/Spring 2008 

1 
 

Homework 6 Solutions 
 
1. Non-Centrosymmetry and Piezoelectricity.  We have stated that the ionic equilateral 

hexagon shown in Fig. 1(a) is a good example of a non-centrosymmetric unit cell. 
(a) Write down a simple argument for why the ionic hexagon is non-centrosymmetric.  Use the 

built-in dipoles to derive an expression for the built-in electric polarization vector in the 
coordinate system shown in Fig. 1. 

The ionic hexagon is non-centrosymmetric because if we draw any line through the center of the 
hexagon that connects two atoms, the two atoms have opposite charge, which generally means 
they are different atoms.  In the coordinate system given, we can write down the electric 
polarization vector as a sum over 9 terms, each being a unique pairing of a negative and positive 
ion.  It is helpful to label the 9 dipoles as in Fig. 1, which also shows the key angles and 
dimensions.  From the decomposition into equilateral triangles that the hexagon allows, we see 
that θ1 = 30o and θ2 = 60o.  Therefore, the parallel dipoles (1) and (2) contribute a net dipole 
moment ˆ ˆ( )e dx hy+ , dipoles (3) and (4) ˆ ˆ ˆ ˆ(2 ) ( )e wx hy e dx hy− = − , and dipoles (5) and (6) 
contribute ˆ2edx− .  Clearly the sum of all 6 is zero.  Similarly, dipole (7), (8), and (9) are ˆ2edx , 

ˆ ˆ( )e dx hy− + , and ˆ ˆ( )e dx hy− + , which collectively also add to zero.  So there is no built-in 
polarization for the ionic equilateral hexagon. 
(b) If a compressive strain δd is induced along the y axis, then the dimension h becomes h’ = 

h⋅(1 – ∆).    Before compression, the area of the hexagon is A = h(d + w) = (3/2)hd since w = 
d/2 for the equilateral hexagon.  After compression (and referring to the above figure), the new 
area is A’ =(h - δh)(d’+ w’) ≡ (h - δh)(d + δd + w + δw).  So if the area is assumed to stay 
fixed, (3/2)hd = (h - δh)(d + δd + w + δw) = (h - δh)(3d/2 + δh + δw) .  If δh is  small, this can 
be well approximated as (3/2)d(1+δh/h) = (3d/2 + δd + δw) , or (3/2)dδh/h = δd + δw or 
[(3)1/2/2]δh =  δd + δw since d/h = 1/(3)1/2 for the equilateral hexagon.   

Now, if we recalculate the built-in dipole,  (1) and (2) contribute 
ˆ ˆ ˆ ˆ( ' ' ) 2 [( ) (1/ 2)( ) ]e w x h y e w w x h h yδ δ+ = + + − , dipoles (3) and (4) 
ˆ ˆ ˆ ˆ( ' ' ) 2 [( ) (1/ 2)( ) ]e w x h y e w w x h h yδ δ+ = + − − , and dipoles (5) and (6) contribute ˆ2 [ ) ]e d d xδ− + .  

So the contribution from (1) to (6) is just ˆ ˆ2 [2 2 ) ] 2 [2 ) ]e w w d d x e w d xδ δ δ δ+ − − = − .  And the 
remaining three dipoles (7), (8), and (9) become ˆ[ 2( )]e d d w w xδ δ+ + + , 
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Fig. 1. 
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ˆ ˆ[( ) ( ) ]e d d x h h yδ δ− + + + , and ˆ ˆ[ ( ) ( ) ]e d d x h h yδ δ− + + + , which add up to ˆ[(2 ) ]e w d xδ δ− .  So 
the overall dipole moment is now the sum of all nine: ˆ3 [(2 ) ]totp e w d xδ δ= −

r
.  Note:  This result 

becomes zero under the special condition that 2δw = δd.  But the ratio of δw/δd is determined by 
the bonding (i.e., elastic) properties, which are not likely to satisfy this special case. 
(c) If the hexagons are combined to form a two-dim (honeycomb lattice) we will get the result 

from (b) for each hexagon.  But the area of each hexagon before compression is just (33/2/2)d2  
so the sheet density is nS  = 2/(d233/2).  And the total (line) polarization induced by the stress 
is 3 / 2 2ˆ6 [(2 ) ] /(3 )P e w d x dδ δ= −
r

 [note the units are correct for two dimensions: Cb/m]. From 
the direct piezoelectric constitutive relation, we can write 12 2x xD E eε η= + for a reaction along 
x from a strain along y, where e12 is the piezoelectric stress coefficient.  But in the above 
calculation ε = ε0 (since all calculations were done at the atomic level), so that e12η2 = Dx – 
ε0Ex = Px.   So if δh is small compared to h, we can write η2 = δh/h, and we get the result e12 = 
Px/η2 = 3/ 2 2ˆ ˆ6 [(2 ) ] /(3 ) 2 [(2 ) ] /( )eh w d x d h e w d x d hδ δ δ δ δ δ− = −  in units of [Cb/m] !   

 

2. AlN as a Piezoelectric Material  .   
(a).  By definition, clamped in x and y means that there can be no strain in these axes and the 
only nonzero strain term will be η3.  So the connection equation will be the inverse piezoelectric 
relation PJ = CIJ ηJ – eIj Ej .  To use this, we need the 6x3 form of the piezoelectric stress which 
can be derived from the more commonly used 3x6 form as follows:  
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We also need the stiffness coefficients and values of the piezoelectric stress coefficients, which 
are both tabulated here: 

AlN Stiffness Coefficients (x1010 Newton/m^2) 
C11 C12 C13 C14 C33 C44 C66 
41 14 10  39 12 13.5 

 Piezoelectric      Constants      (Coulomb/m2) εr 
Material e11 e14 e15 e22 e31 e33 εr 

AlN   -0.48  -0.58 1.55 8.5 
 
The stiffness coefficients go into the general stiffness matrix for solids having hexagonal 
symmetry: 
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where C66 = (1/2)(C11 – C12).  Now using matrix multiplication, we can write 
 
     P1 = C13 η3 – e31 E0  

     P2 = C13 η3 – e31 E0  

     P3 = C33 η3 – e33 E0     
Where the other possible P components: P4, P5, and P6 are necessarily zero because we assumed 
up front that the only nonzero strain component was η3.  
Substitution of the appropriate values leads to 

     P1 = 10x1010 η3 + 0.58x106
             [N/m2] 

     P2 = 10x1010 η3 + 0.58 x106           [N/m2] 

     P3 = 39x1010 η3 – 1.55 x106
            [N/m2]   

 
 (b) To get the surface charge density in the two interface planes, we start with the direct 
piezoelectric relation: Di = εijΕj + eiJ ηJ  .  When expressed in terms of the known Ez and η3, and 
using the above 3x6 form of the piezoelectric stiffness matrix, we get DZ = εrε0 E0 + e33 η3.  Then 
from electrostatics, we know PZ = DZ – ε0 E0 =  (εr-1)ε0 E0  + e33η3.  =  6.6x10-5 +1.55 η3  
[Cb/m2].  Until we know the strain, no further evaluation can be done. 

 
(c) If the AlN film is now used as a MEMS cantilever by unclamping it, by definition all the 
stress coefficients will be zero.  So we can write from the piezoelectric inverse relation, 

PJ = 0 = CIJ ηJ – eIj Ej ,   which in full matrix form becomes 
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And when written out using the stress coefficients and E0 = 106 V/m becomes 
 

C11 η1 + C12 η2 + C13 η3 = e31 EZ = -0.58x106  
C12 η1 + C11 η2 + C13 η3 = e31 EZ = -0.58x106  
C13 η1 + C13 η2 + C33 η3 = e33 EZ = 1.55x106   
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This has a simple 3x3 numerical matrix form: 
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(d) One can use MATLAB to invert the 3x3 numerical matrix to get 
6
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or          η1 =  -1.96x10-6 , η2 =  -1.96x10-6, and η3  =  4.98x10-6 
 
3. Common Crystal Structures.   Refer to the “Simple Crystal Structures” of Kittel Chapter 1: 

(a) (1) Sodium Chloride is centrosymmetric, (2) Cesium Chloride is centrosymmetric,  (3) 
Hexagonal Close Packed (monatomic) is centrosymmetric,  (4) Diamond (monatomic) is 
centrosymmetric, and (5) Cubic zinc sulfide (Zincblende) is noncentrosymmetric.  (note: 
several of the “hexagonal” materials we have been talking about, such as AlN, are not HCP, 
but rather Wurtzite.  That is why they are noncentrosymmetric). 
(b) None of the simple crystal structures has a unique polar axis except for zincblende, 
whose polar axis is oriented along the [111] direction of the conventional cubic unit cell. 

 
 


