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Transport Theory #5 
 
Boltzmann Transport in Uniform Electric Field (cont) 
 
We have seen how the solution to the classical Boltzmann transport equation in a uniform 

electric field has the form 
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where f0 is the equilibrium distribution function, the Fermi-Dirac function in the most general 

case.  The product f0(1-f0) has deeper meaning than might first appear.  From statistical 

mechanics we know f0 is the mean number of charge carriers (assumed to be fermions), or mean 

“occupancy”, of any space-spin state quantum state.  So 1-f0 is the mean “de-occupancy” of that 

same state.  This reflects an important principle in transport theory at all levels, including fully 

quantum mechanical.  Which is, transport requires the presence of a particle occupying a state, 

and it requires an available state for that particle to transfer into.   

 In the limit of low carrier concentration (i.e., non-degenerate population) covered in the 

previous section, f0  approaches zero for most particles in the population so the “de-occupancy” 

factor can be assumed to be unity.  This is primarily what makes the calculation of (1) tractable 

with the Maxwell-Boltzmann function – a very common and useful exercise with 

semiconductors.  In the intermediate case of moderate carrier concentration, 0 < fo < 1 and 0 < 1 

- f0 < 1, so that neither factor can be ignored and the calculation of (1) becomes much more 

complicated than the low-concentration case.   

In the limit of high carrier concentration, fo is approaching 1 for most particles in the 

population and the “de-occupancy” factor approaches zero, but clearly can not be ignored.  

Fortunately, the calculation of (1) gets simple again in this “degenerate” limit because of the 

behavior of the behavior of the Fermi-Dirac function, 1( ) {exp[( ) / ] 1}−= − +F Bf U U U k T .   

Plotted in Fig. 1 are f0, 1-f0 and the product f0 (1 - f0).  The only place where f0 and 1-f0 are not 

nonzero is in the region around UF, which makes the product display a narrow symmetric peak.   
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To a good approximation that is best in metals, the product looks like a Dirac delta 

function: ( ) ( )0 01 Ff f A U Uδ− ≈ − .  We find the coefficient A by definition of f0 and its 

derivative with respect to U: 
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∞
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⇒ A = kBT 

So,   ( ) ( )0 01 B Ff f k T U Uδ− ≅ −  ← Dirac Delta function        (2) 

________________________________________________________________________ 

Aside on Dirac Delta function: 

         

Normalization property: ( )' 1x x dxδ
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Fig. 1. 
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________________________________________________________________________ 

     To utilize these properties, we go back and re-write (1) in terms of energy using 21 v
2
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     Given the expression for ( )Uτ< > , we can now apply the delta function approximation 

of (2) in the numerator and the following Heaviside unit step function approximation in the 

denominator 

1( ) ( ) ( )
exp[( ) / ] 1 F

F B

f U U U U
U U k T

θ θ= ≈ ⋅ −
− +

 

This leads to 

( ) ( )3 2

1 2

2 0
3

0

B F

FB

U U k T U U dU

Uk T U dU

τ δ
τ

∞
−

< >≈
∫

∫
 

( ) ( ) ( )
3 2 3 2

3 223 22 33 0

2 2
3 3F

F F F F
FU

F

U U U U
U

UU

τ τ
τ τ< >≈ = =  

      
     This is a very important result: the non-equilibrium ensemble average <τ(U)> can be taken as 

value at Fermi energy.  This leads to the adage often use in the transport theory of metals:  “all 

the action is a the Fermi energy” (or more accurately, the Fermi surface). 
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Boltzmann Equation with Concentration Gradient 

 Going back to the time-dependent Boltzmann equation, we can establish another solution 

that is essentially opposite to transport in a uniform electric field. We suppose that ∂f/∂v is zero 

for all velocity components, but ∂f/∂z is nonzero.  This represents the case of a concentration 

gradient that, as in the case of kinetic theory, can be created by injection of carriers at one point 

of an otherwise homogeneous semiconductor.  To simplify the analysis we assume the 

concentration gradient occurs only along one direction of space, z.  Then the time-dependent 

Boltzmann equation (in the relaxation approximation) can be written 
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= − −

∂
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    The particle current Jn = nvz , which has a (transport) ensemble average, 
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Substitution of (4) yields 
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where the diffusivity is defined by:   
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For special case of the Maxwell Boltzmann distribution 
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Now we recall that for the Maxwell-Boltzmann statistics,  

    
2 2 2v v v 3 Bm k Tτ τ τ< >= < > < > = < >    (6) 

Substitution of (6) into (5) results in the expression: 

31
3

B B Bk T k T k TD
m m e

τ τ µ< > < >
= = = < >    (7) 

which is Einstein’s relation yet again.  It turns out that there is a similar Einstein’s relation valid 

in the opposite limit of high particle concentration, and everywhere in between.  This makes the 

Einstein relation one of the most universal results in all of transport theory.   

 
Importance of Diffusion in Semiconductors 

• Diffusion is a process that tends to drive the solid back to equilibrium after excitation by non-

uniform external forces.  By contrast, drift in an electric field is a process that tends to drive the 

solid away from equilibrium.  So naturally, the two are often co-operating in semiconductor 

devices, leading to the drift-diffusion formalism developed after semiclassical transport. 
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Boltzmann Equation with Temperature Gradient (Optional Material for ECE215B. 2008) 

    The last topic we address on the classical Boltzmann equation is transport in a 

temperature gradient, assumed to occur along the z axis.  And as in kinetic theory, we must 

consider two difference electrical conditions: open circuit, and short circuit, to fully describe the 

subtle coupling between temperature and electrical effects.  We will limit the analysis to thermal 

transport by charge carriers, assumed to be Fermions having well-defined Fermi energy UF (T). 

 

Open-Circuit Conditions 

  We allow for a nonzero electric field along the same axis to accommodate the Seebeck or 

other possible thermoelectric effects.   The Boltzmann equation can be written 
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So we get in steady state: 
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As with electrical drift, by operating on the Fermi-Dirac function for f0, we get 
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 We expand the spatially-dependent term as 
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Finally we recall that  
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Substitution of these into (8) along with (9) yields 
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The most useful quantity to average over this nonequilibrium distribution function is the 

z component of the velocity   <vz> = 
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By substitution of (10), this becomes 
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It is easy to see that the denominator integral over f’ vanishes since 
0

cos sin 0d
π

θ θ θ =∫  
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We can also integrate the numerator over θ and φ to get 
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The only terms that depend on velocity are τ and U (to first order, UF is independent of v).  So if 

we assume a Maxwell-Boltzmann distribution,  
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 Eqn (12) is very useful in describing various thermal effects such as the thermopower, Σ, 

i.e., Seebeck coefficient.  This is obtained by setting <vz> equal to zero in (12), consistent with 

zero electrical current under open-circuit conditions.  Then solving for E, we get 
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which means that  
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With an electrical field and the thermal gradient present, there will be a heat flux 

    <JQ> = n<UKvz>     (15) 
From (12), we can write 
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 (16) 

But we know the open-circuit E from (13), and substitution leads to 
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Therefore, the thermal current has the form 
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and the thermal conductivity is given by the rather elegant expression: 
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Short-Circuit Conditions 

 

 When the ends of the sample are connected by a metal wire so the internal electric field 

of (13) is zero, then (11) becomes 
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and an electrical current will flow: 

<Jq> = nq<vz>  . 


