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Boltzmann Transport with Band Structure and Quantum Mechanical Scattering  
 

Semiclassical Equations of Motion 
    
  The last essential upgrade to the Boltzmann transport formalism is to account for the 

ever-present interaction between the transport particles and the background atoms, or lattice in 

the case of a crystalline solid.  We have previously dealt specifically with electrons in the 

crystalline case and invoked Bloch’s theorem as a means of classifying the wavefunctions and 

categorizing the possible electronic energy states into bands.  In the process, we learned that the 

good quantum mechanical independent variable in the particle dynamics was the crystal wave 

vector, k
G

.  The classical momentum became the crystal momentum k
G
= , and the mechanical 

velocity became the “group” velocity v (1/ ) ( )g nU k= ∇
GGG =  where ( )U k

G
 is the nth band and the 

subscript on the gradient operator reminds us that the operation is made in k space.   In terms of 

these quantities, the particle position is given by 

1v ( )g n
dr U k
dt

−= = ∇
G GGG =     (1) 

And the reaction of an electron to an external force can then be written 

dk F
dt

=
G

K
=       (2) 

In electronic solids, the two most common external forces are the electric and magnetic: 

EqFe

K
=                    m k

qF U B= ∇ ×
JJG K K

=
    (3) 

These are the same as the classical forces except that the velocity in (3) is replaced by the 

quantum-mechanical group velocity.   In the general case of nonzero electric and magnetic fields, 

the combination of (1), (2) and (3) lead to the “semiclassical” single-particle equations of motion 

with (2) expressable in cartesian coordinates as 

( )1/ ( ) ( )x x y z z ydk dt q E U B U B⎡ ⎤= + ∇ − ∇⎢ ⎥⎣ ⎦

G G
=

=
 

( )1/ ( ) ( )y y z x x zdk dt q E U B U B⎡ ⎤= + ∇ − ∇⎢ ⎥⎣ ⎦

G G
=

=
     (4) 
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( )1/ ( ) ( )z z x y y xdk dt q E U B U B⎡ ⎤= + ∇ − ∇⎢ ⎥⎣ ⎦

G G
=

=
 

     

The combination of (1) and (2) form a coupled pair, similar to Newton’s equations but in 

terms of  r
G

and k
G

 instead of r
G

and p
JG

.  Another difference is that r
G

in (1) can not be a point in 

space, as in Newton’s law, but rather the expectation value for the position value of the particle.  

We will see below more precisely how to define this expectation value.  Yet another difference is 

that (1) is linked intimately to the band structure of the particle if it is moving within a crystal 

lattice.   More specifically, (1) couples the motion in real space to the “motion” in k space 

through a map – the Un(k
G

) function for a given band, indexed by n. 

 

Semiclassical Equations of Motion: Behavior of particles in real space 

Before embarking on the development of semiclassical Boltzmann transport formalism, it 

is helpful to better understand what the position vector r
G

 really means in the semiclassical 

model.  This can be accomplished by transforming from k
G

 space to r
G

space using Fourier 

techniques.  We start with a truly “free” particle in vacuum for which the solution to the 

Schrodinger equation has the mathematical form of a plane wave 

( ) ( / )
0 0( , ) j k r t j k r Utr t e eωψ ψ ψ⋅ − ⋅ −= =

G GG G =    (5) 

As in electromagnetics, the plane wave is a physically inadmissible solution when allowed to 

extend to infinity along any direction.  To fix this problem, we formulate a wavepacket 

( ) ( )N'

, ' exp[ ( ' ) ( ') / ]n
k

basis functionFourier amplitude

r t g k j k r jU k tψ = ⋅ −∑
JG JJG GK K =��	�
  

In the presence of a crystal lattice, we must generalize (5) to include a cell-periodic 

portion, which is just the Bloch function: 

, ,( ) ( )jk r
n k n kr e u rψ ⋅=

G G
G G
G G

    (6) 

To make this physically admissible, we again form a wave packet, confined to band n, 
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( ) ( ) ( )'
'

'

,
N

n
k

j U k t
n nk

k
basis function

r t r eψ ψ
⎡ ⎤− ⎣ ⎦=∑

G
JJG

=

G

K K
�	
  

where ( )g k
G

 is the Fourier amplitude function and the sum extends only up to Nk
G

, the Nyquist 

wave vector, within the 1st Brillouin zone (BZ). 

The meaning of r
G

in the semi-classical theory is now addressed by considering the size of 

the wave packet using the translation property of Bloch functions: 

( ) ( )'' jk rr r reψ ψ⋅+ =
G KK K K  

This should apply to the wavepacket as well, meaning that for a particular 0r r=
JGG

, 

( ) ( ) ( ) ( )( )0 , ' 0
'

', ' exp ' ' ' /n k n
k

r r t g k r j k r U k tψ ψ ⎡ ⎤+ = ⋅ −
⎣ ⎦∑

JG JG JG GG GK =    (7) 

We can think of this as a function of 'r
JJG

 for fixed 0r .   And because the entire sum extends only 

over the 1st BZ, we expect that the product ( ) ( ), ' 0' n kg k rψ⋅
JG JG

 extends over a ∆k much narrower 

than the Brillouin zone, i.e.,  

∆k << kN = π/a..     (8) 

By Fourier-transform theory, the extent of the wavepacket, ∆r’, in (7) should abide by the mutual 

uncertainty relation, 

r k′∆ ⋅ ∆ ≈ 1      (9) 

Substitution of (8) into (9) leads to 

ar
π

′∆ >>       (10) 

In other words, the spatial extent of the Block wave packet (in real space) must be significantly 

greater than a lattice constant, which means even greater than the interatomic separation. 

 The analysis of the Bloch wave packet also guides us to better understand the time 

evolution associated with (1).  We should think of rK  as the position of the center of the Bloch 

wave packet, moving with velocity vg
G

.  Through (1) and (2), any external force thereby changes 

the location of the particle in real space and k
G

space as well.  External forces are treated 
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classically but, consistent with (10), must vary even move slowly in space than the wavepackets.   

For example, the wavelength of an ac electric field must satisfy λ >> ∆r.    

The only remaining subtlety of the semiclassical equations is the implicit  requirement 

that the motion be confined to one band.  This is much more difficult to analyze, but can be 

tested with respect to the external forces by the following general conditions: 

(a) For dc electric fields: [ ] FG UUeEa /2<< , where UG → gap to nearest other band 

and eEa → electrostatic potential energy shift over a unit cell 

(b) For dc and ac magnetic fields: [ ] FGc UU /2<<ω= , where 
m
qB

c =ω is the cyclotron 

frequency and cω=  is the kinetic energy shift due to magnetic quantization. 

(c) For ac electric fields: GU<<ω=  , λπω c2=   for ac field 0
j tE e ω  

 

Example of semiclassical theory: Bloch oscillations 

We recall from the analysis of band structure that the first-order effect of the background lattice 

in crystals is the strong Bragg scattering at the Nyquist wave vector, kN = π/a.  The other key 

result was quadratic behavior around local-minimum points (free-electron-like behavior).  So for 

a band having a minimum at k = 0, a good approximate one-dimensional model of band structure 

(along z direction) would be 

U(kx) = (1/2)UB [1- cos(kza)].     (11) 

where UB is the band width, a is the lattice constant, and the absolute minimum energy of the 

band is set arbitrarily to zero.  The group velocity is then given by  

v sin
2

B
g z

U a
k a=

=  

1v sin( )
2

B
g z

U adz U k a
dt k

∂
= ≡ =

∂= =     (12) 

 The second semiclassical equation is  

0 0
zdk

F qE eE
dt

= ≡ − = +=  

for which the solution is simply   0
0z

eE t
k k= +

=          (13) 
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The initial value of k0 can be set to zero with no loss of generality for the present argument.  

Substitution of (13) back into (12) then yields 

0
1v sin( / )

2
B

g
z

U adz U eE at
dt k

∂
= ≡ =

∂
=

= =  

for which the solution (by inspection) has the oscillating form 

0
0

cos( / ) cos( )
2

B
B

U
z eE at z t

eE
ω= − ≡ −∆=    (14) 

where the last step defines the amplitude ∆z and circular frequency ωΒ of the oscillation, and 

again, the initial value has been set arbitrarily to zero.  This is arguably one of the most 

interesting yet simple predictions of the semiclassical theory, predicted first by F. Bloch, and 

hence called the Bloch oscillation.   

Clearly, the solution for k (13) is progressive in k space, meaning that k changes linearly 

with time across the 1st Brillouin zone until it reaches kN, after which it suddenly re-appears at kx 

= -kN and continues the linear progression once again.  But the solution for the wave-packet 

center (14) is more interesting, displaying oscillations of frequency ωB and amplitude ∆x.  

______________________________________________________________________________ 

Example of Bloch oscillations in a direct band-gap semiconductor.  Suppose the semiconductor 

is crystalline and has a conduction band centered at kx = 0 with a bandwidth UB = 3.0 eV and a 

lattice constant a = 5 Ang.   The resulting model band function of (11) and the associated group 

velocity are shown in Figs. 1(a) and (b), respectively.  The applied dc electric field is assumed to 

be 5x104 V/cm (5x106 V/m), a rather large value, but easily sustained in high-purity, high-

resistivity semiconductors.   Under these conditions, the linear Bloch frequency will be  

    fB = ωB/2π = eE0a/h = 6.04x1011 Hz = 604 GHz. 
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And the amplitude will be ∆z = UB/2eE0 = 3x10-7 m = 0.3 µm 

____________________________________________________________________________ 

In many ways, the Bloch oscillation predicted above has been a “holy grail” of solid-

state and semiconductor physics since it was predicted.  And as of the time of composition, the 

author has not heard of such oscillations being observed in any bulk semiconductor at any 

temperature of operation.  The reasons for this is rather simple, but frustrating, to solid-state 

engineers trying to develop Bloch oscillators.  They can be seen through the following two 

requirements.  In order for the oscillation to occur, the crystal wavevector must be progressive 

over the 1st Brillouin zone, meaning that transport must be ballistic (i.e., collision-free), or nearly 

ballistic.   Stated differently, the oscillation of the wave packet in real space must be sustained 

over a distance of typically 100-to-1000 lattice constants. 

It turns out that these requirements are very difficult (if not impossible) to achieve in a 

bulk semiconductor for one fundamental reason that is clear from Fig. 1(a) and (b).  Typically 

bulk semiconductors have conduction band widths in excess of UB = 1 eV.  As the electron wave 

packet moves in k space within such a band, it will necessarily have to experience a very high 

group velocity, such as the peak values in excess of 106 m/s as shown in Fig. 1(b). Although still 

far below the speed of light and thus nonrelativistic, such velocities create a very strong 

interaction with lattice waves or phonons via acoustic or optical phonon absorption in all 

semiconductors around room temperature, or optical phonon emission in polar semiconductors at 

low temperatures. 
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Fig. 1. 
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   Semiclassical Generalization of Boltzmann Equation 

 The importance of particle collisions and scattering in all solids, even in very pure 

semiconductors, forces us to generalize the semiclassical equations in the same fashion as done 

previously for the classical Newton equation.  Not surprisingly, the first and most common way 

to generalize (2) is through a phenomenological relaxation term 

1 ( ) ( )k n
d k q E U k B k k
dt

τ
→

→ → → → → →⎛ ⎞= + ∇ × +⎜ ⎟
⎝ ⎠

= =
=

             (15) 

where τ(k
G
) is written explicitly as a function of k

G
 to account for energy-dependent scattering.  

No such relaxation term is added to the real-space semiclassical Eqn (1) since τ is assumed not to 

depend on spatial location of the wavepacket. 

  Just as in the classical case, we expect that certain types of particle scattering will have a 

strong dependence on kinetic energy and, therefore, even a stronger dependence on k
G

.  This 

compels us to immediately consider a statistical approach to the semi-classical transport 

 A key issue in the development of a statistical semi-classical approach is that the 

Boltzmannian concept of a “phase space” in which to place each and every particle and to define 

a distribution function is still valid.  We just have to replace of r
G

and p
JG

  by r
G

and k
G

, and stay 

cognizant of the fact that the location of particles in this space is made “fuzzy” by the inherently 

probabilistic nature of the quantum mechanics.   To remind ourselves of this fact, we replace the 

variable r
G

by r
G

wp where “wp” stands for wave packet.  Fortunately, the space is still six 

dimensional, so that we can define the distribution function in the same way mathematically as in 

the classical Boltzmann case, and expand it by the chain rule of (partial) differential calculus as  

wp

scatteringwp

drdf f f dk f
dt r dt dt tk

∂ ∂ ∂
= − − −

∂ ∂∂

GK
GG    (16) 

And guided also by the classical case, we approximate the scattering term by the (small-
perturbation) semiclassical relaxation-time approximation: 

0

( )scattering

f f f
t kτ

∂ −
=

∂
G  

so that (16) becomes 
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0

( )
wp

wp

drdf f f dk f f
dt r dt dtk kτ

∂ ∂ −
= − − −

∂ ∂

GK
G GG    (17) 

Given this semi-classical Boltzmann equation, if f is independent of rK , we can write the 
electrical current formally as 

( ) ( ) ( )

( ) ( )

3

3

v 2 / 2
v

2 / 2

g nband
q g

nband

qn k f U k dk L
J qn

f U k dk L

π

π

⎡ ⎤ ⋅ ⋅⎣ ⎦= =
⎡ ⎤ ⋅⎣ ⎦

∫
∫

G G GK
G G

G G   (18) 

where the factor (L/2π) is the volume per state in k space.  So (18) becomes  

( ) ( ) ( ) ( ) ( )3

3

v 2 / 2 v

4
g n g nband band

q

k f U k dk L k f U k dkNJ q q
V N

π

π

⎡ ⎤ ⎡ ⎤⋅ ⋅⎣ ⎦ ⎣ ⎦= =
∫ ∫

JJG JJGG G G G G G
G

 

Similarly, the thermal current can be written 

( ) ( ) ( ) 3v 4K g nband
J k U k f U k dk π⎡ ⎤= ⎣ ⎦∫

JJG G G G GG
  (19) 

     
As in the classical case, the non-equilibrium distribution function ( )nf U k⎡ ⎤

⎣ ⎦
G

 is found as 

the solution to Boltzmann’s equation.  If we assume f is uniform in real space so that ∂f/∂rwp =0 
and analyze the steady-state, (17) becomes 

00 f dk f f
dtk τ

∂ −
= − −

∂

G
G   

or    0 0
f dk f U dkf f f

dt U dtk k
τ τ∂ ∂ ∂

≅ − ⋅ ≅ −
∂∂ ∂

G G
G G i . 

Where we show a dot product in the last step between two intrinsically vector derivatives.  But 
from the semiclassical equations (1) and (2), we have  

dk F
dt

=
G K

=
    and      vg

U
k

∂
=

∂

JJG
G =  . 

Furthermore, if the perturbation created by F is small, then as in the classical analysis  
( )

Tk
ff

U
f

U
f

B

000 1−−
=

∂
∂

≈
∂
∂

 

Thus the solution to (17) becomes 
( )0 0

0 0

1
v 'g

B

f f
f f F f f

k T
τ −

≅ + ⋅ ≡ +
JJGK

 

In the special and very useful case of a uniform electric field, this becomes 

( )0 0
0

1 vg

B

f f qE
f f

k T
τ − ⋅

= +

JJGK

     (20) 

_____________________________________________________________________________ 
Example of semiclassical Boltzmann equation: uniform electric field in a solid having a single 
filled band.  The general solution for the electrical current is 



ECE215B/Materials206B      Fundamentals of Solids for Electronics        E.R. Brown/Spring 2008 
 

9 

( )0 0
03 3

v 1 v
v

4 4
g g

q g
Bband band

f f qE dkq qJ f dk
k T

τ
π π

− •
< >= +∫ ∫

JJG JJG GKGG G
 

But for a filled band, the second integral has no available states within band  (f0 = 1 for all values 
of k), so this term is approximately zero.  Hence 
     

03 v
4q g

band

qJ f dk
π

< >≈ ∫
GG G ( )034

n
n

band

q U f U k dk
kπ

∂ ⎡ ⎤= ⎣ ⎦∂∫
G G

G
=

   (21) 

     
To evaluate this integral, we utilize yet another important consequence of band structure - its 
symmetry in k space.  Specifically, we recall that for a given band index, 

( ) ( )n nU k U k= −
G G

,       (22) 

which in mathematics is called an “even” function.  And since Un(k) is even, so is f0[Un(k)].  Eqn 

(22) also implies that ( ) ( )n nU k U k

k k

∂ ∂ −
= −

∂ ∂

G G

G G , which in mathematics is called an “odd” function. 

So in total, (21) 
is an integral over the product of an “odd” function times an “even” function.  But such a product 

is also an “odd” function.  And from calculus, we know that the integral of an odd function over 

any zero-centered domain of the independent variable must be zero.   So in the end we get for the 

electrical current from a full band, 

qJ< >
G

=0 

Similarly for the heat flux, we can derive a solution to (17) analogous to (20) and use the 

non-equilibrium function to formulate the thermal current via (19):  

( ) ( )03 3

1 1v v
4 4Q g n g n

band band

J U f dk k U k f dk
π π

′< >= +∫ ∫
G G G GG G

 

Without even going through the work, we can immediately derive the solution for free carriers in 

a filled band based on the same symmetry arguments as above.  As with the electrical current, 

the non-equilibrium term f’ in the second integral will be proportional to f0 (1-f0) so will go to 

zero for a filled band since there are no available states.  Furthermore, the 1st integral also 

vanishes since the integrand is now a product of two even functions (Un and f0) and an odd 

function (vg).  And from mathematics, the product of two “evens” and one “odd” is “odd”.  This 

leads to the following profound theorem of semiclassical transport: 

A filled band cannot conduct electrical or thermal current. 
 



ECE215B/Materials206B      Fundamentals of Solids for Electronics        E.R. Brown/Spring 2008 
 

10 

Corollary: Partially filled bands make good conductors.  In other words, it is not the availability 
of electrons that makes a solid a conductor or insulator. Rather, it is how the electrons are 
distributed in bands.  We came to this same conclusion when covering band structure. 
 

Hole Theorem 

 Yet another profound consequence of the semi-classical theory is the transport behavior 

of a band in which most of the states are occupied with electrons and just a few are empty.   We 

start with the band picture shown below with just one missing electron at wave vector 0k
JJG

, and 

we analyze the effect of this on the crystal momentum and energy of the carriers: 

 

0k−
JJG

Empty
state 

0k
JJG

k

U(k) 

 

In terms of crystal momentum, the missing electron at 0k
JJG

 means that the net wave crystal 

momentum of the sample is 0k−
JJG
=  since all other electrons (occupied states) cancel in pairs.    

 In terms of energy, we can write from the (assumed known) electronic band structure and 

symmetry properties: 

( ) ( ) ( ) ( )0 0 0e e h h hU k U k U k U k= − = − − ≡ −
JJG JJG JJG JJG

   (23) 
where Uh is a fictitious “hole” band that is a mirror-image of the real electronic band about the U 

= 0 axis.  This mirror imaging is shown in the sketch below 

 

0k
JJG

hk
JJG

Empty
state 

U=0 

U 

( )e eU k
G

 

( )h hU k
G

0ek k= −
G G

 
To complete the hole theorem we need to analyze the semiclassical equations of motion, 

starting with evaluation of the group velocity.   Since, the momentum of all electrons cancel in 
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pairs except for the state 0ek k= −
G JJG

 then from (2) we can write one semiclassical equation for the 
entire band 

( )0 1e h
k e e

dk dk dk
e E U k B

dt dt dt
⎡ ⎤= − = − + ∇ × ≡ −⎢ ⎥⎣ ⎦

JJG JJG JJGJJGK K K
= = =

=     (24) 

Then using (23) along with symmetrical properties of the gradient operator, we can write 

( ) ( ) ( ) ( )0 0k e k h h hU k U k U k U k∇ = ∇ − = −∇ − = ∇
JJG JJG JJJG JJGK K K K

   (25) 
where the last equality is justified graphically in the sketch below.  Substitution of the outside 
equality of (25) into (24) leads to the  

( )1h
k h h

d k
e E U k B

dt
⎡ ⎤− = − + ∇ ×⎢ ⎥⎣ ⎦

JJG JJGK K K
=

=  

or by negation, 

( )1h
k h h

d k
e E U k B

dt
⎡ ⎤+ = + + ∇ ×⎢ ⎥⎣ ⎦

JJG JJGK K K
=

=  

 

0k
JJG

hk
JJG

Empty 
state 

U=0 

U 

( )0e eU k k= −
G G

( )h hU k
G

 
      Given this clarification, we can treat the transport of empty states in an otherwise full 
band simply by the following two tricks which constitute the hole theorem:  
 
With respect to transport in a uniform electric field by the semiclassical model, the effect of an 
empty (hole) state in an otherwise-full band can be accounted for by: 
(1) changing the sign of the charge from q = -e to q = +e,  
(2) inverting the energy band about a mirror plane of U = 0 - the highest energy point in the 

band.   
This is a remarkably simple result, and profoundly important for bipolar semiconductors, i.e., 
semiconductors with some occupied electronics states in the highest (conduction) band band, and 
an equal number of unoccupied electronic (hole) states in the next lowest (valence) energy band.  
We will be examining those shortly. 
 The hole theorem can be added to the embodiment of the semiclassical Boltzmann 
transport equation by adding a counterpart to (15) for “holes” 
      

( ) ( )
1e e

k e e

e e

d k k
e E U k B

dt kτ
⎡ ⎤= − + ∇ × +⎢ ⎥⎣ ⎦

JJG JJGJJGG K == JJG
=    (26) 
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( ) ( )
1h h

k h h

h h

d k k
e E U k B

dt kτ
⎡ ⎤= + + ∇ × +⎢ ⎥⎣ ⎦

JJG JJGJJGG K == JJG
=    (27) 

where τh is the hole scattering or relaxation time 
 
Magnetic-Field Conservation Theorem 
 

     Yet another profound consequence of semi-classical transport comes about when there 

is a large magnetic field applied to a solid with an insignificant electric field.   In the special case 

of B
K

>>0 and 0=E
K

, we can write the semiclassical equation (1) as 

( )1e
k e e

dr
U k

dt
= ∇

K JJGK
=    ( )1h

k h h
dr

U k
dt

= ∇
K JJGK

=  

 
  When coupled to (26) and (27) above, we see the following two important facts: 

(1) the component of ek
JJG

 or hk
JJG

 along the B
K

 field is conserved in motion ⇒ k-space motion 

is entirely in the perpendicular plane ⇒ cyclic motion in many crystals 

(2) the total energy ( )e eU k
JJG

 or ( )h hU k
JJG

 is conserved. 

 

The proof of the energy conservation is a simple but elegant exercise in semiclassical transport.  

We assume the band structure is known at all points in k space and can be expanded as 

, ,
,

e h g e h
e h

UU k v k
k

δ δ δ∂
= ⋅ = ⋅
∂

G GGG =     (28) 

 where the subscript e,h mean either electron or hole.  But from the semiclassical equation (26) 

and (27), we can expand δke,h as a function of time 

     
,

, (v )e h
e h g

dk qk t B t
dt

δ δ δ= = ×

G
G JJJG K

=         (29) 

    Combining (28) and (29) we get 

( )v v 0g gU q B tδ δ= ⋅ × =
JJG JJG K

    (30) 

for any uniform B
K

 since vg B×
JJG K

 is always perpendicular to vg

JJG
. 

The practical implications of the magnetic conservation theorem are very important in 

materials science and for semiconductors, metals, and semi-metals.  The cyclic motion and its 
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associated frequency are known as cyclotron resonance.  The motion in k space becomes 

particularly simple – circular or elliptical -  in spherical or spheroidal bands as usually occurs in 

the conduction band of semiconductors.1  This means that the band curvature or, equivalently, 

the reciprocal effective-mass tensor components can be determined through measurement of the 

cyclotron frequency (see HW Problem) as a function of crystal orientation. 

Even when the solid does not have a simple constant-energy (i.e., Fermi) surface, the 

magnetic field theorem is still very useful in understanding the band structure.  This is because 

the cyclic motion in k space creates oscillatory behavior in other transport parameters, which in 

turn can be related to the Fermi energy, effective mass, etc.  Oscillations created in the electrical 

resistivity (or conductivity) are called the Subnikov-de Haas effect, and oscillations in the 

macroscopic magnetic susceptibility χm are called the de Haas-van Alphen effect. 

 

Conductivity Effective Mass 

We have seen that in the presence of a crystal lattice we must use the semi-classical 
picture of transport to properly account for energy band structure.  For example, for individual 
electrons, we have 

( )1dk ke ee E U k Bedt eτ
⎛ ⎞= − + ∇ × −⎜ ⎟
⎝ ⎠

G G
GG G G =

=
=  

Now suppose we have an E field only and a steady state situation such that 
( / )ek Ee eτ= −

G G=     (31) 
We suppose further that the electrons are confined to a conduction band consisting of Ns 
“valleys” having spheroidal constant-energy surfaces.  In the limit of low carrier concentration, 
we can thus write for the electrical current density 

   ( )v
s s

e
J e f dk U k f dkg s e sq

−
< >= − = ∇∑ ∑∫ ∫

G G GG GG
=    

where the sum is carried out over all spheroidal valleys indexed by the integer s, the integral is 
over a single spheroid, and fs is the non-equilibrium distribution function for each spheroid.    
We assume further that the E field is small enough in magnitude that the carriers remain 
approximately equally distributed over all the valleys, as in the equilibrium state, so that fs ≈ 
f/Ns.  Then we can write 

   

                                                 
1  The effective mass parameters of the conduction-bands in both silicon and germanium were first figured out using 
cyclotron resonance measurements in the mid 1950s by competing groups from UC Berkeley (led by C. Kittel) and 
MIT (led by B. Lax).  These experiments also led to the realization that the constant- energy surface of the 
conduction bands was spheroidal, rather than ellipsoidal, as was earlier believed. 
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( )
s

e
J U k f dkeq Ns

−
< >= ∇ ⋅∑∫

G GG G
=     (32) 

________________________________________________________________________ 
Example of conduction through spheroidal-valley semiconductor.  To make further progress on 
analyzing (32) is helpful to look at conduction in a specific example, n-type silicon.   In this case 
the constant-energy spheroids have six different forms when expressed in cartesian coordinates 

in k space:  ( )
2

0
22 2( )

2
x

kk k kyx z

l t t
U k

m m m
±⎛ ⎞

⎜ ⎟= + +⎜ ⎟
⎝ ⎠

G =

    ,      

2
0

2 2)2 (
2

yyx zk kk k
m m mt l t

±⎛ ⎞
⎜ ⎟+ +⎜ ⎟
⎝ ⎠

=
   or   

222 2 )0(
2

yx z z

t t l

kk k k
m m m

±⎛ ⎞
⎜ ⎟+ +⎜ ⎟
⎝ ⎠

=

    (33) 
Without loss of generality we can restrict our analysis to transport with a uniform E field 
(magnitude E0) along an arbitrary axis, say x.  Then we need calculate only the x component of 
(32) which requires calculating the x component of the group velocity of all six ellipsoids in (33) 

( )
2 2 2 2 22 2 2 2 4
l l

k k k k kx x x x xU kx e m m m m mt t ts
∑∇ = + + = +

GG = = = = =
 

But from (31) 0( / )k Ex eτ= − = , so that 
22 2

02 4 2 40 [ ] ( ) ( ), 6 6
e

e
l t l t

eE e e EJ f k dk f k dkq x m m m m
τ τ

− ⎛ ⎞−
< >= + = +⎜ ⎟

⎝ ⎠
∫ ∫

G G G G= =
= =

 

2
2 1 2 4

0 0*6 l t

ne
ne E E

m m mc

τ
τ

<⎡ ⎤ >⎛ ⎞
⎢ ⎥= < > + ≡⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

where the last step defines the conductivity effective mass, mc
*.   

            

1 1 12 4 1 1 1
* 6 3m m m m mmc l t l t t

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= + = + +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    (34) 

Numerically, we know for silicon that   00.98lm m=  and 00.19tm m=  , so that *
00.26cm m=

 . It is important to note that the conductivity mass is a fundamentally different quantity 
than the density-of-states mass md* defined earlier in the statistical mechanics of 
semiconductors.   Eqn (34) is an arithmetic average over the ellipsoids, whereas the density-of-

states mass was a geometric average.  We recall for silicon that * 23
d t lm m m=  which when 

evaluated yields md* = 0.33 m0 . 
 It is not hard to see that the evaluation for silicon above is independent of the direction of 
the applied electric field, provided it is uniform. In other words *

00.26cm m=  is a fundamental 
electrical transport property of silicon.   It is a bit more difficult to prove that the last step of (34) 
is valid for all spheroidal-valley conduction bands provided that the semiconductor has cubic 
symmetry.  We can think of it as a peculiar arithmetic sum that is independent of where the 
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ellipsoids are located or how they are oriented in k space.  In contrast, the density-of-states mass 
is a geometric sum. 

In conclusion it is important to be clear on when the conductivity mass is used and when 
the density-of-states mass is used.  As a rule-of-thumb, the conductivity mass is used whenever 
the physical effect involves transport via classical or quantum mechanics in response to electric 
fields.  An interesting example, besides electrical conduction, is electron or hole binding to 
hydrogenic donors or acceptors with binding energy derived earlier, UB = 13.6 eV mc* / (εr)2 , 
where εr is the relative permittivity. To understand why this should depend on the conductivity 
mass rather than the density-of-states mass, we recall that in the hydrogenic model the bound 
electron (or hole) generally has a Bohr radius that extends over many unit cells of the crystal.  So 
roughly speaking, the bound electron or hole can be thought of as a particle in orbit over many 
unit cells and under the influence of the electric field of the donor or acceptor nucleus.  As such, 
it satisfies the criterion given above for application of the conductivity effective mass. 

 
 


