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Transport Theory #7 
 
Quick Review of Classical Scattering Theory 
  

Classical mechanics teaches us of two types of particle scattering, elastic, and inelastic.  
In elastic scattering, momentum and energy are conserved and the scattering process between a 
particle and a scatterer can be understood in terms of the total geometric scatterercross section, 
σC , the density of scatterers n, and the particle velocity, which together yield a collision rate 

1
C c

C

f n vσ
τ

= ≡      (7) 

where τC is the collision time.  In general, the total collision cross section can be related to a 
differential cross section σ(θ,φ) that is almost always independent of the azimutal angle φ, so that 

( ) ( )
0

2 sinC d d
π

σ σ θ π σ θ θ θ= Ω =∫∫ ∫    (8) 

 In transport we are always concerned about the flux of particles, which also constitutes a 
flux of momentum, even for massless “particles” like phonons.  So another cross section, the 
momentum scattering cross section σm, is used 
to weight σ(θ) in the integrand of (1) by the 
degree to which the incident particle has its 
incident momentum deflected .  As seen in the 
sketch to the right with incident velocity iv  and 
final (after collision) velocity fv , the deflection 
factor should go to zero at θ =0  zero, and to a 
maximum at θ = π.  Clearly a deflection factor 
of (1 - cosθ) makes sense in all ways, leading to 
the expression, 

( ) ( )
0

(1 cos ) 2 (1 cos )sinm d d
π

σ σ θ θ π σ θ θ θ θ= − Ω = −∫∫ ∫    (9) 

Although originally classical, (9) applies to quantum mechanical scattering as well, and when 
combined with (7) yields the useful expression. 

( ) ( )
0

1/ (1 cos ) 2 (1 cos )sinm mn v nv d nv d
π

τ σ σ θ θ π σ θ θ θ θ= = ⋅ − Ω = ⋅ −∫∫ ∫  (10) 
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Quantum Mechanical Scattering Theory: The Basics 
 

Scattering theory gets particularly elegant when the particles can be represented by plane 

waves having wave vector k .  This occurs, of course, when the particles are “free” and have the 

associated energy eigenfunction 
1/ 2( ) exp[ ( )]r V j k rψ −= ⋅      (11) 

where the normalization is satisfied over a reference volume V.  In crystals, we have the 

corresponding Bloch energy eigenfunction 
1/ 2

, ,( ) ( ) exp[ ( )]n k n kr V u r j k rψ −= ⋅    (12) 

where V is now the volume of the primitive unit cell.   

Now we assume that the particle of interest is in the form of a wavepacket made from 

states (12) centered (in k space) about some 1k k= .  This is an inherently distributed form in 

which the interaction with the atomic lattice is already accounted for.  We assume a defect or 

perturbation exists such that the perfect translational symmetry of the lattice is broken.   

Intuitively, we expect such a defect or perturbation, if small enough, will scatter the incident 

particle wavepacket to a second wave packet still formed from the states (12).  A schematic 

diagram of the process is shown in Fig. 1.   Fortunately, there is a large class of defects and 

perturbations in which the wavepacket after scattering is centered (in k space) about a different 

2k k=  than the incident 1k k= , but the cell-periodic function ,n ku  is nearly unchanged.  Such 

scattering events are generally called elastic, since the change of k  is primarily in vector 

direction, not vector amplitude. 
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Fig. 1. 
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The problem of calculating the transition of a free-particle quantum-mechanical state 

from 1k k=  to 2k k=  is one of the oldest and most important in modern physics.  It reduces to 

finding the probability rate R1,2 with two key assumptions:  

(1) that there are so many possible 2k states and so much coupling between them that after the 

transition from 1k  to 2k , there is negligible likelihood of the same particle making the 

transition from 2k back to 1k  . 1   

(2) the particle energies before and after the transition are exactly equal (consistent with elastic 

scattering).   

In this case, the transition rate can be written,2 

2 1

2
1,2 2 1,

1

2 1| | { [ ( ) ( )]}
( )k kR H U k U k
k

π δ
τ

= − ≡    (13) 

Historically, (13) was first derived by Fermi and is so useful in solid state and other branches of 

physics that is called the “Golden Rule.”   The last step in (13) defines rigorously the scattering 

time added earlier to the semiclassical equations of motion as part of the single-particle 

relaxation time approximation.  The perturbation Hamiltonian is defined by the usual quantum-

mechanical expectation value 

2 1 2 1

' '
2 1, , ,| ( , ) |k k n k n kH H k kψ ψ=< >    (14) 

. 

Semiclassical Scattering Theorem 

As in the classical analysis, τ is inherently a function of 1k , sometimes a strong function.  So the 

best approach is to incorporate (13) into the semiclassical Boltzmann formalism through two 

collision terms: 

                                                 
1 This is distinctly different than the analogous problem in isolated-atom (i.e., “atomic”) physics 
whereby an external perturbation acts on an atomic wave function ψ1 , causing a transition to ψ2 
.  In this case, after some time, called the Rabi “flopping” time, the atomic wave function can re-
cycle back to ψ1  .  This assumes, of course, that no significant scattering or “dephasing” of the 
wave function occurs during the process. 
 
2  See any good book on Quantum Mechanics, e.g., (1) H. Kroemer, “Quantum Mechanics” (Prentice Hall, New 
York, 1994, or (2) C. Cohen-Tannoudji, et al. “Quantum Mechanics,” [Wiley Interscience, New York, 1977]. 
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        (i)
3

2 1,2 1 2 1 23

1 2

( ) ( , ) ( )[1 ( )]
(2 )collision

f k V d k R k k f k f k
t π

→

∂
= − −

∂ ∫             (15) 

and  

(ii) 
3

2 2,1 1 2 2 13

2 1

( ) ( , ) ( )[1 ( )]
(2 )collision

f k V d k R k k f k f k
t π

→

∂
= + −

∂ ∫     (16) 

1 2 2 1

( ) ( ) ( )
collision collision collision
total

f k f k f k
t t t

→ →

∂ ∂ ∂
= +

∂ ∂ ∂    (17) 

The factor V is the volume of the sample, and V/(2π)3 is the volume per state in k space.  Both 

(15) and (16) display the “occupancy-to-de-occupancy” principle addressed earlier. Note that 

(15) and (16) do not violate the irreversible-transition assumption behind (13) since a particle 

that contributions to (15) and one that contributes to (16) will always be two different particles.   

In general (15) and (16) are very difficult to solve.  But just as in the case of Boltzmann 

classical and semiclassical transport, life gets relatively simple in the special case of low particle 

concentrations.  Then we can approximate  

11 ( ) 1f k− ≈   and   21 ( ) 1f k− ≈  

3
2 2,1 1 2 2 1,2 1 2 13

( ) [ ( , ) ( ) ( , ) ( )]
(2 )collision

total

f k V d k R k k f k R k k f k
t π

∂
= + −

∂ ∫   (18) 

 for the nonequilibrium distribution function f.  The second simplifying step is to invoke the 

principle of detailed balance, one of the most profound principles in all of transport theory and 

quantum physics for that matter.  It states that in the equilibrium state, any microscopic processes 

involving the same two states must balance each other “in detail.”  In other words, the total 

number of particles tranferring into a quantum state must equal the number of particles 

transferring out.  Mathematically, this can be stated in the present context as 

2,1 1 2 0 2 1,2 1 2 0 1( , ) ( ) ( , ) ( )R k k f k R k k f k=    (19) 

 where f0 is the Fermi-Dirac function.  Substitution of (19) back into (18) leads to 
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3 0 1
2 1,2 1 2 2 13

0 2

( )( ) ( , )[ ( ) ( )]
(2 ) ( )collision

total

f kf k V d k R k k f k f k
t f kπ

∂
= + −

∂ ∫      (20) 

where we assume 
0 1

0 2

( ) 1
( )

f k
f k

≈   (elastic approximation) 

3
2 1,2 1 2 2 13

( ) ( , )[ ( ) ( )]
(2 )collision

total

f k V d k R k k f k f k
t π

∂
≈ −

∂ ∫   (21) 

where the last step follows from the assumption of elastic or near-elastic scattering 

 To go further, we need to apply our solution derived previously for the semiclassical 

Boltzmann equation (Eqn. 20 in previous section): 

( )0 0 0
0 0

1 g g

B B

f f v qE q f v E
f f f

k T k T
τ τ− ⋅ ⋅

= + ≈ +   (22) 

We can apply (22) to simplify (21) through the use of trigonometry applied to the scattering 

diagram in Fig. 1(b),3  with ,1gv  defining the polar axis in spherical coordinates, ,2gv  having 

polar angle θ2 and azimuthal φ2, E  having polar angle θ1 and azumuthal φ1, 2k  having polar 

angle θ3 and azumuthal φ3, and a relative azumuthal angle between E  and ,2gv   of φ = φ1 – φ2 .   

In this same coordinate system, the volume differential is 

d3k2 = (k2)2sinθ3dθ3dφ3 .    (23) 

Given these definitions we can re-write (22) as 

0 ,1 0 ,1 1
1 0 1 0 1

cos
( ) ( ) ( )g g

B B

q f v E q f v E
f k f k f k

k T k T
τ τ θ⋅

≈ + = +   (24) 

                                                 
3 Note that this is diagram is written in terms of group velocities rather than wave vectors, and that the 

group velocity, being proportional ( )U k∇  is not necessarily parallel to k  except in the special case of a 

spherical band. 
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0 ,2
2 0 2 1 2 1 2( ) ( ) (cos cos sin sin cos )g

B

q f v E
f k f k

k T
τ

θ θ θ θ φ≈ + +  (25) 

Now utilizing the elastic condition once again, f0(k2) ≈ f0(k1), k2 ≈ k1, and vg1 ≈ vg2.  Hence, 

substitution of (23), (24) and (25) into (22) yields: 

0 ,13
2 1,2 1 2 1 2 3 3 33

( ) [cos (cos 1) sin sin cos ]sin
(2 )

g

coll B
total

q f v Ef k V d k R d d
t k T

τ
θ θ θ θ φ θ θ φ

π
∂

≈ − +
∂ ∫     (26) 

where the last step uses an elegant theorem from spherical trigonometry for the dot product 

between two vectors (spherical law of cosines), each oriented away from the polar axis.4  

Depending on the geometry, φ and φ3 will be different by just a constant, so that the last term in 

the integrand of (26) that depends on cosφ will be zero in the dφ3 integral from 0 to 2π.   Thus, 

carrying out the dφ3 integral over the first term and substitution of (24) back into (26) yields, 

21 0 1
2 2 1,2 2 3 32

[ ( ) ( )]( ) (cos 1)sin
(2 )collision

total

V f k f kf k k dk R d
t

θ θ θ
π
−∂

≈ −
∂ ∫ ∫  (27) 

which can be re-written in the elegant form     

1 0 1

1

[ ( ) ( )]( )
( )collision m

total

f k f kf k
t kτ

−∂
≈ −

∂
    (28) 

2
2 2 1,2 2 3 32

1

1 (1 cos )sin
(2 )( )m

V k dk R d
k

θ θ θ
πτ

≈ −∫ ∫   (29) 

The development culminating in (28) is sometimes called the semiclassical scattering theorem, 

but also constitutes a proof of the relaxation-time approximation we adopted previously for the 

semiclassical Boltzmann transport equation.  But now we have a rigorous expression for 

calculating the relaxation time !  And because we assumed that the scattering was elastic (or 

quasi-elastic), τm is the time required to change the crystal momentum.  Hence it is usually called 

the momentum relaxation time, and hence the subscript “m”.  This is the most useful form of 

relaxation time in solid-state transport theory.  The energy relaxation time – the other one 

commonly used – is generally much greater than the momentum relaxation time, but becomes 

                                                 
4 See, for example, CRC Standard Mathematical Tables 25th Ed. (CRC Press, W. Palm Beach, FL,, 1978), p. 176. 
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more and more important as external field(s) get larger and drive the distribution function f 

further away from equilibrium. 

 

Calculation of Momentum Relaxation Time with Quantum Mechanics 

  

 The most common application of (29) occurs when the carriers lie in a band that is 

spherical, or at least “spherical enough” that gv  is approximately parallel to k  at all points of 

the constant energy surface.  In that case, θ3  ≈ θ2, and  

2
2 2 1,2 2 2 22

1

1 (1 cos )sin
(2 )( )m

V k dk R d
k

θ θ θ
πτ

≈ −∫ ∫   (30) 

As we shall see shortly, (30) is very handy in direct band gap semiconductors, such as GaAs as 

InP, in both the conduction band (exactly spherical or spheroidal), and valence band (warped 

sphere). 

 The factor in the integrand sinθ (1-cosθ) is reminiscent of the same factor in the classical 

scattering theory (9) and (10).   To make the correspondence, we switch the order of the 

integration in (30) to get 

( )2
1,2 2 2 2 2 22

1

1 (1 cos )sin
(2 )( )m

V R k dk d
k

θ θ θ
πτ

≈ −∫ ∫   (31) 

This is the momentum relaxation time for one particle and one scatterer.  But the expression (10) 

was for one particle and a large number N = nV of scatterers.  For one scatterer we can re-write 

(10) as 

( )
0

1 2 (1 cos )sin
m

v d
V

π

π σ θ θ θ θ
τ

= ⋅ −∫    (32) 

where, again, V is the volume of the entire sample and v is the incident particle velocity – now 

necessarily a group velocity.  Direct comparison of (31) and (32) yields, 
2

2
1,2 2 23( )

(2 )
V R k dk

v
σ θ

π
≈ ∫     (33) 

an elegant expression that is a bit confusing until we remember that k2 is the radial variable in the 

spherical-coordinate basis of k space with k1 defining the polar axis, and θ is the polar angle in 
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this same basis.  Eqn (33) is also a good exercise in dimensional analysis to show that σ(θ) has 

units of area.  

 The most common application of (33) in solids occurs when R1,2 can be approximated 

from time-dependent perturbation theory by Fermi’s Golden rule 

2 1

2
1,2 2 1,

2 | | { [ ( ) ( )]}k kR H U k U kπ δ= −    (34) 

2 1

2
2 2

2 1 2 22 ,
1

( ) | | { [ ( ) ( )]}
(2 ) k k

V H U k U k k dk
v

σ θ δ
π

≈ −∫    (35) 

To use (35) properly, we must remember that the Dirac delta function δ(x) has dimensions [x]-1, 

in order that it be normalized over the domain of x.  So we need to rewrite the differential taking 

advantage of our assumption of spherical (or near-spherical) bands, 
2

2 2 2* /( )dk m dU k=     (36) 

and     1 1 / *v k m=          (37) 

2 1

2
2

2 1 2 22 3 ,
1

*( ) | | { [ ( ) ( )]}
(2 ) k k

V m H U k U k k dU
v

σ θ δ
π

≈ −∫   (38) 

2 1 2 1

2 2 2 2
2 2

1 2 1 1 22 4 2 4, ,
1

( *) ( *)( ) | ( ) | | ( ) |
(2 ) (2 )k k k k

V m V mH k k k H k k
k

σ θ
π π

≈ = ⋅ = =       (39) 

where the last equation follows from the sifting property of the Dirac delta function.  Eqns (39) 

and (32) comprise a very useful pair in the theory of semiconductors, (39) based on the quantum 

mechanics of scattering and (32) based on transport principles.  We will next apply this pair to a 

variety of important scattering problems in a number of practical materials, ranging from silicon 

to GaN. 


