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Piezoelectric Solids and Transducers 

Macroscopic View of Piezoelectricity: The Constitutive Relations 

 

 Arguably the most important sub-class of ferroelectric solids is the piezoelectrics 

(origin: piezo Greek for pressure).  These are materials in which an applied pressure or 

stress produces a large surface charge Q and associated displacement vector D  in the solid.  

For reasons that will be come clear in a moment, this is called the “direct” piezoelectric 

effect.  Historically the “direct” piezoelectric effect was observed in Rochelle salt, quartz, 

topaz, and some other materials by Curie brothers (Pierre and Jacques) in 1880.  They 

applied various mechanical forces to these materials and measured charge on their surfaces.   

From a practical standpoint, the direct piezoelectric effect is responsible for a large number 

of useful devices, such as strain gauges, spark igniters (“Bic flick”), etc.  Because all such 

devices are converting mechanical energy into electrical energy, they are called 

“transducers” (more on these shortly. 

In 1881 a scientist named Lippman predicted that piezoelectric effects should be 

reciprocal.  That is, an applied charge (or electric) field should produce a pressure (or 

stress).  This is called the converse (or inverse) piezoelectric effect.  Later around 1910, P. 

Langevin in France utilized this effect to build a sonar generator from quartz capacitors. 

But, quartz is not a very good piezoelectric material, so the sonar was not very useful in 

World War I.   But it became a critical factor in World War II and a very useful technology 

for maritime technology as well with the advent of stronger piezoelectric materials, such as 

lead zirconate titanate (PZT). 

  

General observation about  piezoelectrics: 

• All ferroelectric materials are piezoelectric, and these tend to be the best for transducer 

application.  Useful classes are: (1)  Perovskites e.g., BaTiO3 (barium titanate), (2)  PZT 

(lead zirconate, lead titanate), (3)  PVF2 (polyvinylidenflouride), the first useful piezoelectric 

polymer (i.e., plastic). 

• But many non-ferroelectric crystals display significant piezoelectricity, e.g., SiO2 (quartz), 

AlN (aluminum nitride), ZnO (zinc oxide). 
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• And even the III-V compound semiconductors, GaAs, InSb, etc, exhibit piezoelectricity, but 

it tends to be weak.  Nevertheless, the piezoelectric effect at the microscopic level can have 

profound impact on free-carrier-phonon scattering, as we will see later in transport theory. 

 

Independent of the type of piezoelectric material, there are general expressions called the 

constitutive relations that couple the macroscopic thermodynamic variables, electric field, 

displacement vector, stress, and strain.   These relations come in pairs, one defining a mechanical 

variable, and the other an electrical variable.  For example, one can write. 

m mn n mp pP C e Eη= ⋅ −  (inverse piezoelectric effect)  (1) 

and 

m mp p mn nD E eε η= + ⋅  (direct piezoelectric effect)  (2) 

where Pm is the stress, ηn is the strain component (relabeled from en in the chapter on 

elasticity to avoid confusing with the electric charge e), Ep is the applied electric field, Cmn 

are the stiffness coefficients,  εmp is the dielectric constant (possibly tensorial), and emn are 

the piezoelectric stress  coefficients, named after their connection between stress and field in 

(1).  Note the adoption here of the repeated-index convention; i.e., any subscript that occurs 

twice is implicitly summed over.  That is, (1) really means 
6 3

1 1
mn n mp p mn n mp p

n p

C e E C e Eη η
= =

⋅ − ≡ ⋅ −∑ ∑  

Also, since the stress and strain have six components (reduced notation) and the electric 

field and displacement have three, the piezoelectric stress matrix is necessarily non-square.  

It is a 6x3 matrix when relating P to E, and it is a 3x6 matrix when relating D to P.  As 

expected, the 3x6 form is just the 6x3 form transposed.  And as with the stiffness matrix, 

more and more of its elements become zero as the symmetry of the piezoelectric crystal 

heightens.  Note that non-square matrices are very common in “mixed-force” phenomena; 

i.e., those that connect physical variables belonging to different canonical pairs in the 1st law 

of thermodynamics.  Another example is electro-optic effect. 

An alternative constitutive formulation is 

m mn n mp pS P d Eη = ⋅ +     (3) 

and 
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m mn n mp pD d P Eε= ⋅ +     (4) 

where Smn are the compliance coefficients, and the dmn are elements of the piezoelectric 

strain coefficient.   Whether the pair (1) and (2), or the pair (3) and (4) are used usually 

depends on practical issues, such as boundary conditions on the sample (e.g., when the 

boundary is mechanically “free”, i.e., “unclamped”, then (3) and (4) are convenient because 

the left side of (3) can be set to zero.  This is often done in the analysis of MEMS devices 

such as membranes and cantilevers). 

 Independent of the formulation, the piezoelectric stress and strain coefficients are 

defined so that “bigger is better.”  And often there is a particular axes in the solid for which 

the stress or strain coefficients describing the response is a maximum.  In the case of the 

stress coefficient, it is usually called exx (or e11), and the size of this particular coefficient is 

often used to qualify piezoelectrics.  For example, in crystalline quartz, e11 = 0.17 Cb/m2.  

And in ceramic PZT, e11 = 30.0 Cb/m2.  Roughly speaking, these define the useful range of 

piezoelectric materials.  And in spite of quartz being so inferior to PZT, it still gets used 

because of its low cost and low acoustic attenuation at high frequencies.   

Non-Centrosymmetry: A Litmus Test for Piezoelectricity  

A sufficient condition for piezoelectricity in a solid is that it not be centrosymmetric.   
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For crystalline solids, symmetry conditions generally involve a virtual geometric operation 

on the solid with respect to a specific point.  For the centrosymmetry condition, one seeks a 

center point and an axis through that point for which inversion (i.e., moving the observation 

point from r  to - r , or equivalently, keeping the observation point fixed and moving the 

crystal from r  to - r ) yields the same atomic form no matter what the angular orientation 

of the axis.  A good example is shown in the Fig. 1 below where a unit cell is shown for a 

two-dim honeycomb and square lattice.  Both are ionic materials with two oppositely-charge 

atoms.  In the absence of external forces, both are electrical neutral and have no built-in 

dipole moment because of cancellation.  Clearly, if we choose the reference point at the 

geometric center of each unit cell, we get two different answers for the inversion operation.  

For the square lattice, inversion leads to the same atomic form, so this lattice is  

centrosymmetric.  But for the honeycomb, it leads to an atomic change, so the ionic 

honeycomb is non-centrosymmetric.  Logically, the act of testing for centrosymmetry, or 

any symmetry condition for that matter, always proceeds by seeking affirmation, and then 

deducing the opposite if affirmation is not found. 

To verify the correlation between centrosymmetry and piezoelectric behavior, Fig. 1 

also shows (right side) the qualitative result of applying a uniaxial stress and assuming an 

elastic (i.e., Hooke’s law) response.  The strained square lattice continues to have no 

polarization since P  is still the sum of atomic dipoles that cancel in pairs.  But the strained 

honeycomb develops a non-zero P due to non-cancellation of the atomic dipoles, and thus 

should exhibit a piezoelectric effect (Homework problem).  If a macroscopic crystal is 

created from a lattice of such honeycombs, there would be a net balanced positive charge on 

the right side of the crystal (perpendicular to the applied stress) and a net negative charge on 

the left side.  This would create a net surface charge on both sides - the telltale sign of 

piezoelectricity.  

The above definition is rather clear-cut and elegant, but only applicable in crystals.  

In noncrystalline materials, a centrosymmetry condition can still be tested, provided the 

material is homogeneous.  But they are not tested not against the microscopic atomic form.  

Instead, it gets applied to macroscopic physical measurements.  We start by choosing a 

specific axis and direction and a macroscopic physical quantity, usually a vector quantity 

such as the electric field, a stress, etc.  We then measure a second physical quantity, usually 
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a tensorial quantity, such as the electric susceptibility, the stiffness, etc.  If an inversion of 

the field quantities along the chosen axis leaves the tensorial quantities unchanged, then the 

crystal is said to be centrosymmetric with respect to that tensor quantity.  The description of 

this procedure is rather vague in many books because they will often drop off the “with 

respect to” clause and just label crystals as centrosymmetric and noncentrosymmetric.  This 

is because all physical quantities within a given tensorial rank have the same behavior.  For 

example, all physical quantities described by 2nd, 4th, or other even rank tensors are always 

centrosymmetric in homogeneous material. This is obvious for quantities of 2nd rank, which 

can always be written as Xi = Yij Zj  where Yij is the (matrix) quantity of interest.  The test 

for centrosymmetry involves sign reversal of Xi and Zj, which trivially leaves Yij 

unchanged.  Therefore, the crystal is centrosymmetric with respect to Yij. 

A good example of a quantity having centrosymmetry is the dielectric constant (or 

electric susceptibility) through Di = εij Ej .  A second and less obvious example is the elastic 

stiffness.  At its most basic level, the stiffness is a 4th rank tensor having 3^4 or 81 

components.  In our earlier discussion of elasticity theory, this was reduced to 36 

components by treating the solid as motion-free.  Note that the centrosymmetry with respect 

to these definitions of dielectric constant and stiffness does not necessarily mean that the 

overall dielectric constant or stiffness is centrosymmetric.  Other effects can break the 

symmetry by virtue of their odd-order (usually 3rd) tensorial behavior.  For example, the 

dielectric constant can be disturbed by a strong strain (piezo-optic, or acousto-optic effect), 

or the stiffness can be changed by a strong electric field (piezoelectric “stiffening”).  As we 

will see shortly, the fundamental physical quantity and the change induced can (and usually 

do) have different tensorial behavior.   This is one of the more confusing points in the theory 

of “mixed-force” phenomena in solids, for which piezoelectricity is a paradigm. 

 

Symmetry Operations with Respect to a Point: A Quick Return to Ferroelectricity (to be 

covered later) 

The centrosymmetry condition for crystals pertains to inversion with respect to a 

fixed point in space, any point.  Not surprisingly, there are other operations besides 

inversion that can be defined with respect to the fixed point, and that together classify all 

crystals into distinct groups.  They are: (1) mirror-plane imaging, (2) 2π/n rotation about a 
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fixed axis through the point, where n = 1, 2, 3, 4, or 6, and (3) 2π/n rotation (where n = 1, 2, 

3, 4, or 6) about a fixed axis plus inversion through the point.1  As stated earlier, the logical 

goal in these symmetry operations is to seek a point (plus any associated plane, axis, etc.) 

that yield affirmation, and then deduce non-affirmation if no such point can be found.  Note 

that these point symmetry operations are unrelated to the spatial-symmetry (e.g., 

translational symmetry) operations that we applied to test for the condition of a Bravais 

lattice and that ultimately determine the number of possible unique Bravais lattices to be 14.  

So the point-symmetry operations and the subsequent crystal classification are a great 

example of an elegant mathematical field called Group Theory. 

It turns out that the point-symmetry operations result in 32 different groups of 

crystals, each group satisfying a unique combination of point-symmetry conditions.  Of 

these, 20 are non-centrosymmetric.   Of these 20, ten also possess a unique polar axis.  By 

definition, along such an axis the atomic form (or at least one physical property) is 

dissimilar and not related by any point-symmetry operation associated with the crystal 

group.  These remaining ten groups are the ones that can display pyroelectricity.  

 

Quick Return to Ferroelectricty: Yet another Necessary Condition (to be covered later) 

 

The conditions of non-centrosymmetry and a unique polar axis apply as well to 

ferroelectricty as to piezoelectricity and pyroelectricty.  But they are not the only necessary 

conditions.  Another condition is that the crystal also possess a unit cell with a non-centered 

total charge.  By this we mean that the center-of-charge does not coincide with the center-

of-mass.  Mathematically the center of mass is given by 

1

1 N

C i i
i

R m r
M =

= ⋅∑   where       
1

N

i
i

M m
=

= ∑  

where N is the number of atoms in the cell and ir are the vectors to each atom from a chosen 

coordinate system.  The charge center is given by 

1

1 | |
N

Q i i
i

R q r
Q =

= ⋅∑       where      Q = 
1
| |

N

i
i

q
=
∑ . 

                                                 
1 A great reference on these operations and their mathematical description is found in “Physical Properties of 
Crystals: Their Representation by Tensors and Matrices,” J.F. Nye (Oxford, London, 1976). 
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When CR  and QR  coincide, one does not get ferroelectricty.    In BaTiO3, for example, the 

necessary non-coincidence results from the quasi-mobile Ti atom that can move relative to 

its nominal position at the center of the cubic unit cell, and get “locked-in” to a non-centered 

location at T < TC.  Similar atomic mobility occurs in PZT and other ferroelectrics.  Now we 

see why historically the phenomena of piezoelectricity and pyroelectricity were discovered 

decades before the explanation and confirmation of ferroelectricity.  Ferroelectricity is much 

more complicated and rare because it entails chemical as well as symmetrical conditions. 
 

Electric-to-Acoustic Transducers 

 
 By definition, transducers are devices that convert energy (or power) from one 

physical domain into another.  Electric motors are a good but rather complicated example. A 

better example from an electronics viewpoint has been the piezoelectric transducer.  

Arguably the most useful piezoelectric transducer structure has been the simple parallel-

plate capacitor.  It is the basis for ultrasonic (“thickness-mode”) transducers and RF thin-

film bulk acoustic resonator (FBARs), for example.   

 Before getting into the details it is good to state two assumptions implied by the 

constitutive relations: 

(1) Electric-to-acoustic transducers are almost always reciprocal in the sense that if a given 

stress yields a certain voltage (or current), then that given voltage (or current) will 

produce the same stress in reverse. 

(2) Electro-acoustic transducers are usually linear in the sense that V APout in=  or, 

reciprocally, inBVoutP = , where Pin and Pout are the input and output stresses, 

respectively. 
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Parallel-Plate Capacitor with Normal Dielectric (receive mode) 

 
If a homogeneous solid is placed between the plates of a parallel-plate capacitor, the 

electric field and stress inside the solid will both be uniform if the thickness of the capacitor 

L0 is much less than the width, and much less than the acoustic-wavelength λ.   In this case 

we can write (from electrostatics) C = ε0εrA/L0 and Q = CV.  Hence, at a constant voltage 

Q C Vδ δ= ⋅ .  Suppose this change of capacitance is caused by a change in thickness 

through a perpendicular component of stress.  This perpendicular force will change the plate 

separation and, hence, change the charge on the plates as 

dC AV AV AV[ ) / L ]0 0dL 2 L L0 0L0
Q L L ( L Lε ε εδ δηδ δ δ− − −⋅ ⋅ ⋅ ≡ ⋅= = −  

where ε ≡ εr ε0 , and the last step is aimed at introducing a familiar elastic quantity, the strain 

η ≡ (L-L0)/L0.  This looks very similar to a piezoelectric effect, but is not.  The clue is the 

linear proportionality to the bias voltage, V.  In essence, the bias is disrupting the 

centrosymmetry inside the capacitor at the macroscopic scale, thereby allowing a coupling 

of strain to charge.  But as we shall see shortly, this “electrostrictive”-type effect is much 

weaker than high-quality piezoelectricity. 

If we assume the stress is sinusoidal in time, then δη will also be sinusoidal in time 

and so will Qδ .   Hence, 

0 0

AV AV di
L t L dt

ε δη ε η
δ

− −
= →  

where i is the current through the external circuit.  If the stress is uniaxial and the response 

of the solid is elastic, P = Y η where Y is the Young's modulus.  Hence, 

d 1 dP
dt Y dt
η

 

A useful figure-of-merit for this or any other transducer is the coupling parameter 

between the physical domains, in this case between the elastic and electrical.  We assume 

one plate of the capacitor is coupled to a separate material in which there is a unidirectional 

acoustic plane wave of amplitude 0P .  Defining a transmission coefficient τ for propagation 
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of stress across the interface, we can write P ≈ τ⋅Pinc ≈ τ⋅P0 sin(ωt), where Pinc is the incident 

stress.  So, 

d 1 dP
P0dt Y dt Y

cos( t )η τ ω ω≈≈  

and 

AV CV
i( t ) P P0 0L Y Y0

cos( t ) cos( t )ε τ ω τω ω ω− −
≈ =  

A useful coupling parameter is the responsivity  rms
I

inc ,rms 0

i AV
P L Y

ε τ ωℜ ≡ =  = ωCVτ/Y [A/W] 

Example: Glass capacitor @ 10 MHz coupled to water.   A = 1 mm2, L0 = 0.1 mm.  Solving 

we get C0 = 3.5 pF, and because Y = 73 GPa for glass, εr = 4.0, and τ ~ 0.1, we get ℜI ~ 

3x10-16 ⋅V [A/Pa].  So for a typical voltage of 100 V, ℜI ~ 3x10-14  [A/Pa].   This is a very 

low responsivity, too low to be useful in electronics.  To get more responsivity we could 

increase A, but this starts to make the transducer cumbersome.  We could also increase 

V/L0, but this is limited by dielectric breakdown effects to ~105 V/cm.  A better solution is 

to fill the capacitor with a good piezoelectric material. 

 

Parallel-Plate Capacitor filled with Piezoelectric (receive mode) 

 
As with a normal dielectric capacitor, we assume the bias voltage is fixed and apply 

a pressure, i.e., stress, perpendicular to the plates.  With a piezoelectric, two things will 

happen:  (1) a change of charge on plates from electrostatics and (2) a change of charge on 

the plates from the direct piezoelectric effect.  To calculate the net effect, we use a modified 

version of the constitutive Eqn (2) that concentrates just on the plates of the capacitor, 

guided by the analysis given above.  We will assume that there is one predominant 

piezoelectric stress coefficient exx along the direction of the E field inside the capacitor (this 

is not too restrictive… if the piezoelectric material in the capacitor has a different 

predominant stress coefficient, say eyy or ezz, we could just re-orient the appropriate axes to 

make it align with the E field).  We know on the plates that there will be a surface free-

charge density σ, and an electric field perpendicular to the plates E = σ/ε.  Therefore, D ≡ 

eE = σ, also perpendicular to the plates.  And since E is uniform between the plates, so 
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should be D, so we can multiply the left side of Eqn (2) by the area of the plates A to get 

D⋅A = σ⋅A = Q.   Similarly, since E = V/L0 and C = εA/L0, we can write εE = 

(C⋅L0/A)(V/L0) = C⋅V/A.  So multiplying the last term in Eqn (2) by A yields the “capacitor-

model” version of the direct piezoelectric relation: 

1Q CV e Axxη= +  

    

piezoelectric stress coefficient          strain along x axis 

(this also shows clearly that since the strain is unitless, xxe  must have units 2Cb m ).  And 

the current in the external circuit becomes: 

1
ddQ dLdC

dt dtdL dt
i( t ) V e Axx

η⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
= = +  

All piezoelectrics are still elastic and sides of the capacitor are usually “unclamped”, so that 

1 1P Yη= .  Hence, if a sinusoidal stress wave impinges on the capacitor, we have 

1 inc 0P P P sin( t )τ τ ω≈   

and  

xx
0 0

e AC Vi( t ) P cos( t ) P cos( t )
Y Y

τ ω ω τ ω ω− ⋅
+ ⋅ . 

So the responsivity is 

( )e A C VxxYI
τ ωℜ − ⋅≈  

Example: PZT capacitor @ 10 MHz (a common frequency for medical ultrasound): e11 ≈ 25 

Cb/m2, εr ~1700, A = 1 mm2, L0 = 0.1 mm, Y ≈ 4.8x1010 N/m2, τ ≈ 0.1 (usually the 

transducers are coupled to “soft” tissue, which is close in acoustic impedance to water, 

creating a low transmission of stress from the capacitor to the outside medium) 

   ℜI = 1.3x10-10 + 2.0x10-11 [A/Pa] 

            

                          The direct piezoelectric effect dominates. 

And we get ℜI ≈ 1.5x10-10 [Amp/Pa] – 430 times more responsive than the glass capacitor ! 
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PZT Capacitors as Ultrasonic Generators 

 
One of the most useful aspects of piezoelectric capacitors is that they can be used 

both as linear transmitters and receivers.  This makes them analogous to electronic 

transistors in many ways.  But unfortunately, the transducers can not provide power gain.  

To predict the performance of piezoelectrics as transmitters, we drive the capacitor with a 

sinusoidal voltage source and “radiate” acoustic stress according to the same formalism we 

just followed.   The appropriate piezoelectric constitutive relation is the inverse expression 

Eqn (1) 

P1 = C11η1 - e11 E1  

As in the case of a receiving capacitor, we expect the piezoelectric term to dominate so that 

P1 ≈ -e11 E1 = -e11 (V0/L0)  

and the transmitted stress under sinusoidal drive is 

V cos( t )0P( t ) xx L0
e ωτ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

≈  

For systems applications, a more useful parameter is absolute radiated power. 

11
22|P| Ae V0Arms 2Z 2ZL0 00

P I A τ⎛ ⎞
⋅ = ⎜ ⎟⎜ ⎟

⎝ ⎠
= ⋅ =  

where I is the acoustic intensity and Z0 is the acoustic impedance of the transmitting 

medium.2  (note here that Prms is a power and P is a stress ) 

 

 

                                                 
2 See any good book on acoustics, such as “Fundamentals of Acoustics,” L. E. Kinsler, A. R. Frye, A. B. 
Coppens, and J. V. Sanders 4th Ed (John Wiley, New York, 2000) 

~

Stress
wave

V
~

Stress
wave

V  
Fig. 3. 
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Example:  PZT generator into water: A = 1 mm2, L0 = 0.1 mm, exx = 25 Cb/m2, Z0 ≡ ρ⋅c = 

(1000 KG/m3)⋅(1400 m/s) ≈1.4 MRayl (water), and τ ~ 0.1 (owing to the acoustic 

impedance mismatch between PZT and water).  So, Prms ≈ 2.2x10-4 (V0 )2 [W], and at a 

typical drive voltage of V0 = 10 V,  Prms = 22.0 mW.  This is a clear statement of why PZT 

piezoelectric generators are so important - they can produce useful levels of power with 

modest drive voltages ! 

 

A Summary of Important Piezoelectric Materials for Electronics 

 

We have seen by example how handy the piezoelectric stress coefficients are, at least 

in capacitor calculations.  As stated earlier the piezoelectric stress reduces to a 3x6 (or 6x3) 

matrix representation of the 3rd rank tensor e .  And like the stiffness and compliance 

matrices, the number of vanishing components goes up with heightened symmetry of the 

crystal.  Because most of the useful piezoelectric materials for electronics have rather high 

symmetry, it is useful to classify the materials by the number of unique non-zero elements.  

(1) One unique nonzero element.  The popular non-centrosymmetric cubic Zincblende 

crystals (group “43m”) have only one unique element but appearing three times: 

14

14

14

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

e
e

e

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

       

GaAs, InP, InSb, and other important non-centrosymmetric III-V semiconductors fall into 

this class, as do several II-VI compound semiconductors (e.g., CdTe and ZnSe).   The e12 

and stiffness coefficients for GaAs are listed in Table I.  

(2) Two unique nonzero elements.  By reducing the symmetry to trigonal (32),3 we get the 

piezoelectric stress matrix shown below with two independent coefficients.   The classic 

example here is crystalline quartz, having the numerical values listed in Table I.  Note that 

e11 for quartz is only marginally larger than e14 for GaAs. 

                                                 
3  the interested student should look back to 215A notes #5, Table I where the 14 Bravais lattices were 
classified by decreasing degrees of symmetry. 
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11 11 14

14 11

0 0 0
0 0 0 0 2
0 0 0 0 0 0

e e e
e e

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎝ ⎠

  

(3) Three unique nonzero elements.  By going down to hexagonal (group 6mm) crystals, we 

get the form below.  Two important examples here are AlN and ZnO, which have the same 

Wurtzite crystal structure and very nearly the same piezoelectric stress coefficients. 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

000333131
0015000
0150000

eee
e

e
 

(4) Four unique nonzero elements.  By reducing the symmetry further to trigonal, we get 

one more important class of piezoelectric materials with 4 unique elements.  The prime 

examples here are LiNb03, BaTiO3, and its derivatives, such as BaSrTio3.   

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−

000333131
001502222
22150000

eee
eee

ee
  

 

 Symmetry Stiffness Coefficients   (x1010 Newton/m2) 
 Material Group C11 C1

2 
C13 C14 C33 C44 C66 

GaAs Cubic 43m 11.9 5.3    6.0  
Quartz Trig 32 8.7 0.7 1.3 -1.8 10.7 5.8  
AlN Hexagonal 6mm 41 14 10  39 12 13.5 

LiNbO3 Trigonal 3m 20.3 5.3 7.5 0.9 24.5 6.0 7.5 
 Piezoelectric      Constants      (Coulomb/m2) εr Density 

(Kg/m3) 
Material e11 e14 e15 e2

2 
e31 e33 εr ρ 

GaAs  0.154     12.8 5317 
Quartz 0.171 -0.044     4.27-4.34 depending 

on direction  
2650 

AlN   -0.48  -0.58 1.55 8.5 3230 
LiNbO3   3.7 2.5 0.2 1.3 85 (in “a” plane) 

29 in “c” plane 
4644 
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Non-Crystalline Materials. 

 

By now it should be clear that these forms of the piezoelectric stiffness matrix can apply 

even to noncrystalline materials.  After all, the quantities it relates -  the stress to the electric 

field, or the displacement to the strain - are all macroscopic thermodynamic quantities.  So it 

should not be surprising that the strongest piezoelectric materials, which still tend to be the 

“exotic” ceramics, can still be ascribed a specific form of piezoelectric stiffness matrix.  

Perhaps the best-known example is PZT-5H, which fits in to the hexagonal 6mm point 

group, the same as AlN and ZnO.  But its three non-zero stress coefficient e33, has a value 

typically between 25 and 30 Cb/m2 !   So there is research aimed at developing single-

crystal films of PZT in the hopes of getting an even bigger e33 than this. 

 

Dr. Culjat will be providing more material on polymeric piezoelectrics (e.g., PVDF) during 

his guest lecture. 


