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Transport Theory #8 

 
Canonical Examples of Semiclassical Scattering Theory 
  

1. Ionized Impurity Scattering 
  

Ionized point-like defects, such as donor and acceptors in semiconductors, are 

fundamentally important and common in solids.  And because they are not charge-neutral, 

they create an electrostatic potential that can scatter “free” carriers such as electrons or holes.  

But when the solid is a metal, semi-metal or semiconductor, there is generally a high enough 

concentration of such carriers that the electrostatic potential is not the simple Coulomb 

potential from electrostatics.  There is a collective effect of the charge carriers as a whole to 

“screen” the impurity potential such that the normal 1/r variation of the Coulomb potential is 

multiplied by another term – a decaying exponential - that causes the potential to decay away 

much faster at great distance from the impurity.  This is the screened Coulomb electrostatic 

potential (for impurity charge qS, ionization number Z) 

( ) ( ) ( )04 expS r DV r q r r Lπε ε= −    (1) 
 
At low carrier densities, LD is the Debye length,  

LD = [(kBTεrε0/(ne2)]1/2    (2) 

and at higher densities it becomes the Thomas-Fermi screening length.   

 To calculate the scattering effects with (1) and (2), we first need the perturbation 

Hamiltonian from a Bloch state k1 to a Bloch state k2.   In the spatial representation this is 

given by 

k1

k2

θ/2 |k1|sin(θ/2)

k1 k1k1

k2

θ/2 |k1|sin(θ/2)

k1k1  
Fig. 1. 



ECE215B/Materials206B      Fundamentals of Solids for Electronics        E.R. Brown/Spring 2008 
 

2 
 

 

[ ] ( )2, 1

3expp
k k

q
H V r j d r

V
 = − ⋅ ∫

G G G
1 2k k r    (3) 

where qP is the charge of the incident particle. 

 ( ) 3

0

exp( / ) exp
4

P S D

r

q q r L j d r
V rπε ε

−  = − ⋅ ∫
G G G

1 2k k r    (4) 

( )) 2

0

exp( /
exp sin

4
DP S

r

r Lq q j r drd d
V r

θ θ φ
πε ε

−  = − ⋅ ∫ ∫ ∫
G G G

1 2k k r   (5) 

where the last step is just re-expression in spherical coordinates.  This is a classic integral of 
science and can be solved simply by first defining the direction of the vector −

G G
1 2k k  (which 

is fixed during the integration) arbitrarily along the z axis of a same spherical coordinate 
system.  Hence, ( ) | || cos cosk rθ θ− − ≡ ∆ ⋅ ⋅

G G G GG Gi1 2 1 2k k r = k k r | , and there is no dependence 

on azimuthal angle, so that (5) becomes, 
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The θ integral is straightforward and yields 
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From standard integral tables or a good symbolic integration tool, this can be evaluated as 
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a remarkably simple result.  To turn this into a differential scattering cross section for use in 
transport calculations, we note from the trigonometry of Fig. 1 that ∆k =2k1 sin(θ/2) , so that 
(∆k )2=(2k1)2 sin2(θ/2)= 2(k1)2(1-cosθ), where the last step uses a trigonometric identity.  
Hence,  from the central result of the quantum mechanical scattering theory, 
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One remarkable effect is already evident in (8) – the cross section does not depend on the 
relative signs between incident particle and scatterer ! 
 To turn (8) into a momentum relaxation time, we need to carry out the transport 

integral    ( )
0

1/ 2 v (1 cos )sinm In d
π

τ π σ θ θ θ θ= ⋅ −∫    (9) 

where nI is the concentration of ionized impurities.  The first term in the integrand on the 
RHS of (9), that goes as sinθ, is an odd function with respect to the center of the integration 
domain, θ = π/2, whereas the θ-dependence of (8) is even.  So the first term of (9) vanishes.  
The second term, through a good integral table or symbolic match tool yields, 
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where β ≡ 2k1LD .   Using the spherical-band relation 2 *
1 1( ) /(2 )k m U== , we get 
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To do transport evaluation, (1) should be averaged over the particle distribution 
function to get <τm>.  This can be done just over the Maxwell-Boltzmann function since the 
particle concentration has been assumed low from the beginning.  But the expression in 
square brackets clearly depends on energy through the definition of β.  But its dependence is 
much weaker than the dominant term (U1)3/2 since in the spherical-valley approximation 

2( ) / 2 *U k m= = or 2 /k mU= = .  So we treat this expression as a constant C during the 
integration 
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This allows us to integrate (10) using a previous result for the generic form ( ) sAUU −=τ ,  
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Since  S = -3/2, Γ(5/2-S) = Γ(4) = 3! = 6, and we get  
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This expression is credited to H. Brooks and C. Herring and was not published until 1951 
because of the rather tricky calculus needed at the end. 
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The most common way to handle the constant C is to evaluate it at the point U = 3kBT since 

that is where the integrand behind <τm> reaches its maximum (the so-called “Brooks-

Herring” approximation).   So since 2 * /k m U= = , we can write 6 * /BH Bk m k T≡ =   

       ( ) ( ) ( )
2

3 20
2 2 2

128 2 *
ln[ 1 / 1 ]

r
m B

p sI BH BH BH

m k T
q qN
ε επτ

β β β

 
< >=   + − +  

    (12) 

where  

βBH ≡ 2kBH LD = ( )6 * /Bm k T = [(kBTεrε0/(ne2)]1/2 

And of course,     <µ> = e<τm>/m*  

which is a very handy equation to put into a spreadsheet computation. 

 Before applying these expressions, we note the following physically-intuitive but 

non-obvious aspects of (12): (1) as the temperature increases <τm> and <µ> both increase 

consistent with the fact that the increasing temperature increases the mean kinetic energy of 

the particles, and the fact that increasing kinetic energy makes the charged scattering centers 

look progressively more “transparent”,1  (2) as m* decreases, <µ> increases slowly 

consistent with the fact that lower m* means higher mean velocity for a given temperature 

and, therefore, greater “transparency” of the scatterers, (3) as εr increases <τm> and <µ> both 

increase rapidly consistent with the fact that higher εr reduces the electric field and 

electrostatic potential in the solid per unit ionized charge.  Note that all three of these effects 

are favorable to the use of semiconductor devices at room temperature, particularly since 

semiconductors tend to have low m* and high εr, as we found out in our studies of band 

structure and electric (atomic) polarizability, respectively. 

 

Specific example of GaAs at 300 and 77 K 
* 16 3 16 30.067 , 13.0, 1 10 / , 1 10 /e r Im m m n cm n cmε= = = = × = ×  

                                                 
1  First observed by E. Rutherford and his group in the early part of the 20th century on the experimental studies 
of scattering of charged particle beams from charged stationary target 
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⇒ LD  = 428 Ang    kBH =  3.7x108 m-1  ,  βBH = 32  ,  and C = 5.9  at 300 K 

so that <τm> = 7.0 ps and µ = 18.3 m2/V-s = 1.8x105 cm2/V-s which is much higher than the 

experimental value of 6000 cm2/V-s in this grade of GaAs 

But at 77 K, we get  LD  = 217 Ang   kBH =  1.9x108 m-1  ,  βBH = 8.1  ,  and C = 3.2  so that 

<τm> = 1.7 ps and µ = 4.4 m2/V-s = 4.4x104 cm2/V-s which is quite close to the 77-K 

experimental value.   

Specific example of Si at 300 and 77 K 
* 16 3 16 30.26 , 11.9, 1 10 / , 1 10 /c e r Im m m n cm n cmε= = = = × = ×  

At 300 K, ⇒ LD  = 412 Ang    kBH =  7.3x108 m-1  ,  βBH = 60  ,  and C = 7.2  at 300 K 

so that <τm> = 9.7 ps and µ = 6.6 m2/V-s = 6.6x104 cm2/V-s which is much higher than the 

experimental value of ~1300 cm2/V-s in this grade of Si 

But at 77 K, we get LD  = 209 Ang, kBH =  3.7x108 m-1 ,  βBH = 15.4 , and C = 4.5  so that 

<τm> = 2.0 ps and µ = 1.4 m2/V-s = 1.4x104 cm2/V-s which is close to the 77-K experimental 

value.  

Important practical points: 

(1) The mobility is usually stated in “practical” units of cm2/V-s, obviously not MKSA.   

(2)  The great discrepancy between the 300-K <τm> and <µ> values for GaAs and Si is 

caused by the fact that around room temperature and higher, ionized impurities play 

relatively little role in the scattering compared to phonons, which we now start to address. 
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2. Acoustic Phonon Scattering 

  

The mobility calculated above for the ionized impurity scattering is generally very optimistic 

in semiconductors around room temperature because it ignores the effect of the effect of 

lattice vibrations.  Until about 1950, this effect remained rather mysterious.  Then in a very 

elegant theorem by Bardeen and Shockley, it was shown how the lattice waves create a 

uniform perturbation on the electrons because of their effect on the lattice constant and, 

therefore, the potential energy.  By this time it was known that the carriers in semiconductors 

generally lie (in k space) near band edges, and that the band-edge energy represented the 

potential energy UP of the electrons relative to the conventional zero of infinity.   

The simplest form of the Bardeen-Shockley proof utilizes elasticity theory to relate 

the band-edge energy to the strain η through the relation: 

δUP = Ξ η     (13) 

where Ξ is the deformation-potential constant  - generally a known parameter for most 

semiconductors and usually a surprisingly big number, ~ 10 eV.  The large size of Ξ can be 

traced back to the large change of cohesive energy with small change of interatomic 

separation away from the equilibrium point, or similarly, the very small thermodynamic 

compressibility of most semiconductors (and solids, in general).   

To relate (13) to the temperature and statistical-mechanics of phonons, we recall that 

each phonon represents the quantized amplitude of a specific lattice wave (in phasor form), 

ˆ ˆcos( )] Re{exp[ ( )]}p p p pu A k r k A j k r k= ⋅ = ⋅ ± ⋅
G GG G G

   (14) 

where u is the deformation at each lattice away from the equilibrium position, A is the 

amplitude, kp is the phonon wave vector (to not confuse with k for the carriers), and ωp is the 

circular frequency associated with the dispersion curve ω vs kp.  Elasticity theory taught us 

that the strain can and should be defined in terms of the divergence of the deformation, so 

that from (14), 

( )pu j k uη ≡ ∇ ⋅ = ± ⋅
GG G G
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clearly a phasor representation.  So if we restrict the analysis temporarily to longitudinal 

modes, so that u and kp are parallel, η = ±jkpu, and (13) becomes 

δUP = j Ξ kp u = j Ξ kp Aexp[j(kp⋅r)]    (15) 

 The reason (15) is so elegant is that it can be put directly into Fermi’s Golden rule 

with the understanding that Hk1,k2 = δUP  !  This leads to the perturbation Hamiltonian 

 

2 1

3
, 1 2| | exp[ ( ) ]p

k k p

j k A
H j k k k r d r

V
Ξ

= − ± ⋅∫
G G G G

 

where V is the sample volume, needed for normalization of the wave functions.  Since there 

are no external forces at work, whatever happens between the electrons and phonons should 

conserve total crystal-momentum conservation, (assuming of course that the electrons stay 

within the same band and that no photons are generated).  Hence we can write: 

1 2 0pk k k− ± =
G G G

 

and    2 1

3
,| | p

k k p

j k A
H d r k A

V
Ξ

= = Ξ ⋅∫   (16) 

The final preparation step for the transport calculations is to relate A to the phonon 

statistical mechanics.  We made this correspondence in the coverage of lattice waves and 

phonons where we showed that the amplitude of lattice waves could be related to the mean 

number of phonons corresponding to that wave (see also Kittel Chap. 4, Eqn 29) 

2 4( 1/ 2)k

p

n
B

Vω ρ
< > +

=
=

    (17) 

where <nk> is the occupancy for the phonons (Planck function), ωp is the phonon dispersion 

relation, ρ is the density, and V is the volume of the sample.   However in that derivation, the 

lattice wave was a standing wave composed of two equal-amplitude but oppositely-going 
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traveling waves, u = Bcos(kx)cos(ωt) = (B/2)cos(kx+ωt) + (B/2)cos(-kx+ωt) where the last 

step follows by trigonometric identity.  So by comparing (14) and (17), we deduce that A = 

B/2, or 

2 ( 1/ 2)k

p

n
A

Vω ρ
< > +

=
=

     (18) 

In our acoustical (long-wavelength) approximation and at  room temperature, we have in 

most solids    
1

exp( / ) 1
B

k
B

k T
n

k Tω ω
< >= ≈

−= = >> 1 

And ω ≈ (Cmm/ρ)1/2 k where Cmm is the longitudinal stiffness coefficient (along the same 

direction as the phonon propagation).  Hence, we get 

2 1

1/ 2
,| | [ /( )]k k B mmH k T VC= Ξ ⋅     (19) 

Now we are ready to apply Fermi’s golden rule to get the transport parameters.   We 

just need to be careful to account for phonon absorption and phonon emission as separate 

processes, since both are tantamount to scattering of an electron.  Emission of a phonon at 

wave vector  pk
G

results in carrier energy after scattering of 1( )pU k k−
G G

, and absorption of 

such a phonon results in an energy 1( )pU k k+
G G

   In most solids at room temperature, we can 

assume that the energy of the carrier is much greater than the energy of the acoustic phonons 

( Lω= ) so that 1 1 2( ) ( ) ( )p pU k k U k k U k− ≈ + ≈
G G G G G

  Inserting this relation and (19) into 

Fermi’s Golden rule then yields, 

2
1,2 2 1

2 { [ ( ) ( )]}B

mm

k TR U k U k
VC

π δ= Ξ −
G G

=    (20) 

Given this and the fact that (20) does not depend on angle or even on k1, the absorption and 

emission rates are practically equivalent, and the easiest route to the momentum relaxation 

time is just the integral 
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( )2
1,2 2 2 2 2 22

1 (1 cos )sin
(2 )m

V R k dk dθ θ θ
τ π

≈ −∫ ∫    (21) 

2 2
2 2 1 2

1 [ ( ) ( )]B

m mm

k T k U k U k dk
C

δ
τ π

 ≈ Ξ − ∫
G G

=  

where the θ integral was carried out using the fact that the term in the integrand 

cosθsinθdθ vanishes in the integral over the range from 0 to π, but the first term 

sinθdθ  yields a factor of 2.  As before, we must be careful using the Dirac delta function, 

and convert from dk1 in terms of dU1 taking advantage of the spherical-band approximation 

that pervades scattering theory: 

2 2
2 2 1 22

2

1 *[ ( ) ( )]B

m mm

k T mk U k U k dU
C k

δ
τ π

≈ Ξ −∫
G G

= =  

2
13

*1 B

m mm

m k T k
Cτ π

≈ Ξ
=  

from the sifting property of the Dirac delta function.  Finally using the spherical band 

approximation yet again, so that 1/ 2
1 (2 * ) /k m U= =  and we get 

1/ 2 3/ 2
2 1/ 2 2 1/ 2

3 4

* (2) ( *)1 (2 * ) /B B

m mm mm

m k T m k Tm U U
C Cτ π π

≈ Ξ = Ξ=
= =  

or             
4

1/ 2
1/ 2 3/ 2 2(2) ( *)

Smm
m

B

C U AU
m k T

πτ − −= ≡
Ξ

=
               (22) 

where the last step defines the energy-dependent exponent S = 1/2.  Now applying our 

Maxwell-Boltzmann energy averaging expression once again, we get 
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using the fact that Γ(2) = 1 ! = 1.   Finally, we get a trivial step for the mobility: 

( )

4 3/ 2

3/ 25/ 2 2

(2 / 3) 2
* ( *)
m mm

B

e e C T
m m k
τ πµ

−< >
< >= =

Ξ

=
   (23) 

This is the famous Bardeen-Shockley T-3/2 law for the mobility of electrons (or holes) 

by acoustic phonons.  It is the most basic of a long list of phonon-scattering formulae for 

semiconductors, so deserves attention.  Specifically, it has some physical properties that 

deserve mentioning: (1)  <µ> and <τm> both go down with increasing temperature, consistent 

with the fact that the amplitude of all lattice waves (and therefore population of the 

corresponding phonon modes) increases with temperature, so there is more deformation of 

the lattice to scatter the electrons, (2) <µ> and <τm> both increase with crystal stiffness, 

consistent with the fact that a stiffer crystal suffers less deformation of the lattice for a unit 

amount of lattice-wave energy, (3) <µ> and <τm> both decrease rapidly with increasing 

deformation potential consistent with the fact that this potential is the perturbative coupling 

coefficient in the problem, and (4) <µ> and <τm> increase even more rapidly with decreasing 

m* consistent with the fact that smaller m* means higher acceleration and, therefore, a 

greater distance traversed by the carrier before a deformation can disturb it. 

To use (23) it is important to have the values of Cmm, m*, and Ξ at hand.  These 

values are tabulated below for two important compound semiconductors: a narrow-band-gap 

(InSb) and a “normal” band gap (GaAs), as well as Si. 
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Material εr m*/me C11 [Nt/m2] Ξ [eV] 
(longitudinal) 

GaAs 13.0 0.067 119x109 9.3 

InP 12.4 0.077 ? 6.4 

InSb 17.5 0.014 67x109 7.7 

Si 11.8 0.26 166x109 9.2 

Specific example of GaAs at 300 and 77 K 

* 9 2
110.067 , 12.9, 119 10 / , 9.3c e rm m m C x N m eVε= = = = Ξ =  

So at 300 K, <τm> = 2.8 ps and µ = 7.2 m2/V-s = 7.2x104 cm2/V-s which is much higher than 

the experimental value of 6000 cm2/V-s in this grade of GaAs 

At 77 K, we  get <τm> = 21 ps and µ = 56 m2/V-s = 5.6x105 cm2/V-s which is way above the 

experimental value.   

Specific example of Si at 300 and 77 K 
* 9 2

110.26 , 11.9, 166 10 / , 9.2c e rm m m C x N m eVε= = = = Ξ =  

At 300 K <τm> = 0.5 ps and µ = 0.36 m2/V-s = 3.6x103 cm2/V-s which is about a factor of 

2.5 higher than the experimental value of ~1300 cm2/V-s in this grade of Si 

At 77 K, we get  <τm> = 4.0 ps and µ = 2.7 m2/V-s = 2.7x104 cm2/V-s which is higher than 

the 77-K experimental value.   

Clearly, the Bardeen-Shockley model for scattering by acoustic phonons 

overestimates <τ> and <µ> in both GaAs and in Si.  As we shall see shortly, the reason for 

this is that it ignores inelastic scattering, which is not so important with acoustical phonons, 

but becomes very important with optical phonons.  This is particularly true at room 

temperature where the optical phonon modes are beginning to become significantly 

populated, and where the thermal kinetic energy of the carriers ~kBT, becomes great enough 

to start emitting optical phonons– a mechanism that is profoundly important in most modern 

electronic devices because it is ultimately the “braking” mechanism that causes carriers to 

saturate their drift velocity in moderate to high bias electric fields. 
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3. Combined Ionized Impurity and Acoustic Phonon Scattering: 

A Lucid Demonstration of Mathiessen’s Rule 
 

Notwithstanding the above limitations on the Bardeen Shockley model, it is 

instructive to combine the ionized-impurity expression (12) with the acoustical phonon 

expression (23) to form a total mobility.  This is done simply by Mathiessen’s summation 

rule for scattering rates, which means that the net mobility for two scattering mechanisms 

will go as, 

1 2

1 2
total

µ µµ
µ µ

=
+

    (24) 

Fig. 2 shows the plot of the mobility of silicon for each separate mechansim along with the 

combination according to (24).  We assume the same materials parameters for the Si as 

before: * 16 3 16 30.26 , 11.9, 1 10 / , 1 10 / ,c e r Im m m n cm n cmε= = = = × = × and 

9 2
11 166 10 / , 9.2C x N m eV= Ξ = .  The combination curve displays a distinct maximum 

around 90 K that is close to the temperature of a maximum observed experimentally.  This 

peak makes it advantageous to cool devices to 77 K – liquid nitrogen temperature – if it is a 

device type in which the mobility increase improves performance.  As we shall see shortly, 

the inclusion of inelastic scattering reduces the mobility value at the peak. 
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Fig. 2.   


