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NOTES 2: Electrostatic Behavior of Solids#2 

Microscopic Models of  Polarizability: 

 Like many other physical models developed for the solid state, the Clausius-Mosotti 

formula is to be used with caution because of its simplifying assumptions.  But it demonstrates 

certain behavior that are important qualitatively and justify our inspecting the microscopic 

electrostatic behavior in more detail via the polarizability α.  By including only one dipole type 

of density n, we find  
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This is this can be normalized vs 3ε0/n to yield the plot in Fig. 1.  Clearly α goes to zero as εr 

goes to unity, as expected physically.  But also note the saturation behavior at large εr - above a 

certain value of α, which is roughly 0.6 (3ε0/n) in Fig. 1, εr rises very quickly with any further 

increase in α.  In other words, εr becomes very sensitive to α.   In analogy with our feedback 

model developed for χe previously, and since εr = 1 + χe, we can say that the closed loop 

(macroscopic) “gain” of the system is becoming is very sensitive to the open loop 

(microscopic) “gain”.  In electronics, this is a sign that the system is close to instability. 

As mentioned earlier, there are two fundamentally different mechanisms for α at the 

microscopic level: (1) induced dipoles of the individual atoms, and (2) re-orientation of 
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Fig. 1. 
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existing dipoles.  The first is most important in covalently bonded solids.  The second is most 

important in ionic solids.  So not surprisingly, the microscopic electrostatic behavior is strongly 

correlated to the type of molecular bonding going on in the solid. 

 

Atomic Polarizability 

 A fundamental part of atomic structure is the vastly different spatial distributions for 

the positive and negative charge, as shown in the sketch of Fig. 2.  The nucleus harbors all the 

positive-charge ( protons) in a radius of between ~1 and 5 x10-15 m, depending on the atomic 

weight.  The electron orbitals harbor all the negative-charge in a radius of ~5x1011 m (Bohr 

radius).  This big difference in radii allows us to treat the nucleus like a point charge, +Ze, 

where Z is the atomic number.  Furthermore, if there are enough electrons to fill several 

different shells, in a first approximation we can treat them all as a “cloud” of radius R and 

uniform charge density, -Ze/[(4/3)πR3).  The resulting atomic model is as shown in Fig. 1(a). 

 Now if an electric field is applied as in Fig. 1(b), the nucleus will be repelled slightly 

and the electron cloud attracted in such a way that the nucleus will no longer be located at the 

geometric center of the cloud.  If we further assume that the uniformity and sphericity of the 

electron cloud are not perturbed significantly, then we can show the effect of the field simply 

as an offset of the nucleus by a distance r from the center of the spherical cloud.  Next we 

invoke yet another powerful result from electrostatic theory whereby the electric field at a test 

charge Q1 located on the surface of a sphere containing a uniform charge distribution can be 

described by only the total charge contained within the sphere, Q2.  Furthermore, the same 

electric field is obtained by replacing Q2 with a point charge at the center.  Associating Q1 with 

the nucleus and calculating the electronic charge Q’ inside the inner sphere of radius r in Fig. 

1(b), we get a local electric field of localE
r

 = Q’/[4πε0r2] r)  where r)  is the unit vector 

connecting the Q’ charge to Q1.  Since the cloud density remains uniform and spherical, this 

can be re-written 

localE
r

= Ze[(4/3)πr3/(4/3)πR3]/[4πε0r2] x) = - Zer x) /[4πε0 R3].   (2) 

Now the dipole moment associated with Q1 and Q’ is just 1p Q r Zerx= = −
r r )  ≡ α localE

r
.  

Substitution for - Zer x)  from (2) leads to the interesting result: 

     α = 4πε0 R3      (3) 
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The interesting part is that the atomic polarizability is so strongly dependent on the size of the 

electronic cloud.  According to (3), it scales with the atomic volume. 

 We should then expect that solids with “large” atoms might have high polarizability 

and, therefore, high εr.  A good type of solid to test this thinking is one in which the atoms 

“spread” their electronic charge in space for some reason.  As discussed previously in the 

section on bonding, this happens naturally in strongly-covalent solids since each covalent bond 

will draw at least one electron away from the atom of reference roughly half-way to the 

neighboring atom; i.e., half of the nearest-neighbor separation.  In most solids, this means that 

the bonding electron will end up much further away from the reference atom than it would be 

for the same (neutral) atom in vacuum.  This is what we mean by “spread.” 

 In the special case of column-IV elemental semiconductors, viz. diamond, silicon, and 

germanium, we have four such covalent bonds between each atom and its nearest neighbors, 

neighbor lying at the vertex of a tetrahedron.  This four-fold “spreading” of atomic electrons 

should create a very large effective radius R of the atomic clouds, a large atomic polarizability, 

and a large dielectric constant.  Table I lists the results for the elemental semiconductors.  

Indeed, Si and Ge have surprisingly high dielectric constants – a fact that has plagued 

semiconductor devices and integrated circuit technology forever since high εr usually means 

high specific capacitance, be it in a transistor or in a transmission line. 

Table I. 
Material εr α [Cb-m2/V] {according to (1)]}1 
Diamond 5.5 9.0x10-41  

Si 11.8 4.1x10-40 
Ge 15.7 5.0x10-40 

                                                 
1 Note the interesting MKSA units for α, which can also be expressed as F-m2. 
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Ionic Polarizability 

A fundamental aspect of compound materials2 – the vast majority of solids – is some 

degree of ionicity between nearest neighbor atoms.  This was discussed earlier in the text and 

arises naturally from the differences in atomic electron affinity.   Built-in ions are pervasive in 

solids but, interestingly, do not create a built-in nonzero macroscopic polarization eP
r

 unless 

other conditions are satisfied (more on this in the section on ferroelectricity).   The usual 

condition is a net cancellation of all the atomic dipoles such that eP
r

 = 0.  This is true even in 

highly ionic solids such as the alkali halides (NaCl, KCl, etc). 

Although eP
r

 = 0 in the absence of applied field, the built-in ions can create eP
r

 ≠ 0 when 

E0 ≠ 0 through the process of dipole re-orientation.  We need to define “re-orientation” broadly 

since by definition p q d r= ⋅ ⋅
r )  and P n p= ⋅

r r  where d is the physical separation between the 

minus and plus charges of the dipole, and r)  is the unit vector connecting them.  Hence, we can 

get a change in pr , and thus a non-zero polarizability α, from an applied Eo in two ways: (1) a 

change of r)  through angular re-orientation of the dipole, and (2) a change in d through 

compression or expansion of molecular bond.  Many books on dielectrics discuss only the first 

effect, largely because of its predominance in liquids.  But in solids, both effects are important 

and, indeed, the second one becomes the predominant one and the simplest to understand in 

many crystals such as the alkali halides. 

To derive an expression for the ionic microscopic polarizability, we imagine a simple 

two-dim (square) lattice as shown in Fig. 3 in which without external forces all ions are 

separated by the same distance d.  This can be considered as a cut through one lattice plane of a 

NaCl crystal (one of the cubic facets), for example.  In the absence of external electric field, 

the built-in dipoles along any line of atoms parallel to the applied field cancel by pairs, as 

shown through the opposing 1pr and 2pr  atomic dipoles.  Similarly, any chosen dipole in a line 

of atoms along the applied field will be cancelled by a dipole in the closest parallel line.  The 

combination of these two reasons is why ionic crystals have no built-in polarization P
r

 no 

matter how the surfaces are terminated.  In other words, the unit cell (primitive and 

                                                 
2 Here, “compound” means that the solid contains at two or more atomic species. 
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conventional) of an ionic crystal is electrically neutral both in a unipolar (i.e., Qtotal = 0) and 

dipolar ( P
r

 = 0) sense. 

In the presence of the external field E0 , all the positive ions are displaced by u in the 

direction of the field, and all the negative ions are displaced oppositely by the same amount.  In 

other words, if we choose any atomic ion and consider only its nearest-neighbor interactions 

along the direction of the applied field, each contributes to two equal and opposite dipoles.  

The induced dipole moment from the parallel dipole pair is 

1 2 ˆ ˆ ˆ' ' ' [( 2 )] [( 2 )] 4p p p q d u x q d u x qu x= + = + − − = ⋅
r r r

   (4) 

where d is the interatomic separation with zero field.   If the electric field is small enough, we 

can assume u << d and then u can be approximated in the linear elastic limit.  By choosing any 

ion in the lattice in Fig. 3, inspection of the elastic response yields a restoring force 

( 2 ) ( 2 ) 4mF C d u C d u Cu= ⋅ + − − =     (5) 

where C is the interplanar atomic spring constant.  Note that the factor of 4 arises because the 

electrostatic displacement creates “cooperative” elastic response from the two planes nearest to 

the plane containing the chosen atom (i.e., if the spring connecting to one nearest-neighbor 

plane is in compression, then the spring to the opposite plane is in tension; and vice versa).  In 

equilibrium this elastic force must balance the electrostatic force, qElocal, ion by ion, so that we 

can write u = qElocal/4C.  Substitution back into (4) yields. 
2

ˆ' 4 local local
qp qd x E E
C

α= ⋅ = ≡
r rr

     (6) 
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Fig. 3.  Sketch of the electrostatic response of two neighboring rows of atoms in an ionic 
crystal to an electric field.  The vertical dashed lines denote parallel planes which, 
collectively, account for all atoms of the crystal (see ECE215A Notes # XX). 
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So we end up with the remarkably simple result α = q2/C, which is intuitively correct in that an 

increase in C is tantamount to an increase in “stiffness” and thus a reduced displacement to any 

applied force.  Intuitively, the ionic charge should occur quadratically, once for the dipolar 

magnitude and once for the unipolar reaction to the applied field. 

 To test this result against experiment we harken back to the analysis of lattice waves for 

a crystal having a basis of two atoms.  In this case the interplanar spring constant was essential 

to the dispersion curves (ω vs k) for acoustic and optical lattice waves, the acoustical waves 

being described in the small k limit as  

2 2

1 2

( )
2( )

C ka
m m

ω ≈
+  

where a = 2d is the crystal period.  This leads to C ≈ 2(m1 + m2) (ω/ka)2 = (1/2)(m1+m2)⋅(vs/d)2 

where vs = ω/k is the speed of sound in the small-k limit.  This leads to the interesting result 
2 2

2
1 2

2
( ) s

q d
m m v

α ≈
+  

showing, once again, that the atomic size scale matters !  As an example, we take NaCl along 

the [100] direction for which q = e; d = a/2 = 5.63 Ang/2 = 2.815 Ang; vs = (C11/ρ)1/2 = 4820  

m/s , where the stiffness coefficient C11 =  4.87x1010  N/m2 and the density ρ = 2096 KG/m3 ;3  

m1 =  22⋅mp (atomic weight of Na), and m2 =  34⋅mp (atomic weight of Cl) with mp = 1.67x10-

27 KG, the proton mass.  The result (show for HW problem) is α = 1.87x10-39 Cb-m2/V.  . 

We focus only on nearest-neighbor built-in dipoles.  The clue to understanding the 

result harkens back to our analysis of lattice waves and phonons.  If we assume the crystal is 

perfect, the displacement shown in Fig. 3 will be uniform over the entire solid sample.  Since 

different atoms in a crystal form all or part of the “basis” of a non-Bravais lattice, the 

displacement shown in the figure must be occurring within a primitive cell of the lattice.  

Therefore, because the field is static, this displacement is analogous to a longitudinal optical 

(LO) lattice wave of infinite wavelength, i.e., k = 0.  

                                                 
3 See Kittel, “Introduction to Solid State Physics,” 7th Ed., Chap 3, Eqn (6). 
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Classification of Dielectric Types 

• The connection of microscopic to macroscopic also allows us to classify macroscopic 

effects based on microscopic quantities. 

• In addition to classical dielectric response of induced dipoles already described, we also 

have paraelectric and ferroelectric.  To separate out shape (depolarization) effects, the 

classification is based on the relationship of 
r
eP  to

r
inE  (i.e., on χe). 

    

material relation of 
r
eP  to 

r
inE  χe 

Normal dielectric 
(induced dipoles  in electrical insulator) 

Parallel ( )0EEin <  > 0 

Paraelectric 
(permanent dipoles) 

Parallel ( )0EEin <  > 0 

Ferroelectric Independent 
(
r
eP →spontaneous) 

singular 

Metallic 
(good electrical conductor) 

Parallel Undefined4 since χe ≡ 
Pe/(ε0Ein) and Ein → 0 

 

• To quantify these relationships better, we assume the Lorentz relation again: 

 ( )0/ 3local in ep E E Pα α ε= ≈ +
r r rr

 ⇒  3 0

PeP n p n Ee j j j j inj j
α

ε

⎛ ⎞
⎜ ⎟= ≈ +∑ ∑
⎜ ⎟
⎝ ⎠

r
r rr

 

 and solving for 
r
eP  we get  

01 3

j j inj
e

j jj

n E
P

n

α

α ε

∑

∑
≈

−

r
r

 

Now the definitions becomes more obvious: 

Material ∑
j

jjn 03εα  

Dielectric, Paraelectric <1 
Ferroelectric 1≈  

Metallic Effectively >>1 (owing to the macroscopic 
displacement of free carriers in any E field) 

 

 

                                                 
4 A metallic sample will tend to screen out the internal electric field.  We will show later in transport theory how εr 
is large and negative in metals, so χe must do that too. 
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Important comments: 

• One must be careful with this simple picture because solids usually have several dipole 

types, each having different αj. 

• Because ferroelectric state is singular (i.e., χe diverges), it is very sensitive to other 

macroscopic variables, such as temperature and stress. 

• Normal dielectric (induced dipoles) and paraelectric (permanent dipoles) are similar in 

that for both types the solid responds in such a way that the electric polarization 
r
eP  

increases with applied field. 

•  

Types of ferroelectrics (to be augmented in lecture) 

1) order - disorder (e.g. KDP, KH2PO4) 

T > Tc     T < Tc 

 

 

 

 

 

 

2) displacement e.g. Perovskites, BaTiO3, LiTiO3 (most important to engineering) 

  T > Tc      T < Tc 

 

 

 

 

 

(e.g. Perovskites, BaTiO3,  LiTiO3) 

• Because of the critical dependence of Pe on the density and polarizability of atomic 

dipoles, many of the thermodynamic variables are also critical. 

For example Pe is observed to depend critically on T 
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 eP      00 =E
r

 

      1st order phase transition 

      (characteristic of order-disorder ferroelectrics) 

 

    

    Tc   T 

eP  

     
      2nd order phase transition 

      (characteristic of displacement ferroelectrics) 

 

           Tc  T 

Charateristics of phase transitions (from Thermodynamic theory): 

 1st order       2nd order 

1) Entropy discontinuous across Tc because of    1) Entropy continuous acrossTc 
     latent heat)             (no latent heat) 
2) Derivatives of entropy are continuous     2) Derivatives of entropy are  
    (e.g. heat capacity)                singular 
3) Other thermodynamic derivatives are    3) Other thermodynamic 
    continuous          derivatives are singular 
 

1st order derivatives 

eχ  Dielectric susceptibility  vC  Heat capacity 

 

 

 

 

   Tc       Tc   T 

    

• Many of the common ferroelectrics, such as LiNbO3 and other Perovskites, display 

these characteristics.  The sensitive nature of Thermodynamic variables leads to many 

useful effects in ferroelectric solids. 
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dT
dPe                     pyroelectric coefficient 

 

Pyroelectric Effect 

(Room temperature infrared detectors) 

 

               Tc   T    

   ikd                P
x

ik E
e

d
1∂

∂
≡  (Piezoelectric constant) 

Piezoelectric effect 

(acoustic transducers; 

electromechanical 

transducers) 

  

Important comments about ferroelectrics:  At T > TC, the ferroelectric goes into a paraelectric 

state whereby there are still permanent dipoles in the solid, but they all cancel in the absence of 

an external electric field.  But the electric susceptibility can still be very high in magnitude 

because we still have 03 1j jj
n α ε∑ ≈ .   But note that in this state, χe is still positive ! 

Clarification of Energy Density 

• Earlier in discussions of dielectrics we had stated: 

( ) 21
e in e 0 in2dU = E d P V + ε E dυ⋅

r r r
 

   

   potential energy from dipoles  potential energy of field alone 

In the simple case of a parallel plate capacitor filled with dielectric material, this is easy to 

evaluate for energy U(Ein) 

( )inE 2
in e 0 in0

1U = E d P V + ε E V
2

⋅ ⋅ ⋅∫
r r r

 

since for dielectric 
r r
e e 0 inP = χ ε E , we find 
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inE 21
e 0 in in 0 in20

U =V χ ε E dE + ε E V⋅∫  

( ) 2 2
0 e in 0 in

1 V= Vε χ +1 E = ε εE
2 2  

But in the case of a ferroelectric, one must know the precise relationship of 
r
P  vs. 

r
inE  

because this may be nonlinear.   Specifically, the dipole saturation effect makes the “small-

signal” χe (and ε) of ferroelectrics optimistic in predicting energy density.  Saturation is 

associated with a universal phenomenon in ferroelectric (and ferromagnetics) called hysteresis 

(origin Greek for “retardation” or “lagging behind”; in this case P will lag behind E). 

 

   

 

Most ferroelectric materials display the hysteresis curve shown in Fig. 3.  PS is associated with 

the fact that the greatest possible spontaneous polarization is with all dipoles aligned.      

Typically in best ferroelectrics (Perovskites) 

  Ps ~ 30 x 10-2 C/m2                     (Recall P = ε0 χ E and ε0 = 8.85x10-12 F/m ) 

Energy density: U' ≈ PsEc  and Ec ≈ 106 V/m  

⇒ U' ≈ 0.3 x 106 J/m3  or 0.3 J/cc  (rather low !) 

Good “rule-of-thumb” for all dielectric matter is: U' < 1 J/cc 

Note also that 0.3 J/cc is about 6 times higher than U' in Si. (homework problem) 

  

EC

PS

EC

PS

 
 

Fig. 3.  Universal hysteresis curve 


