
ECE215B/Materials206B      Fundamentals of Solids for Electronics        E.R. Brown/Spring 2008 
 

1 
 

Magnetic Effects in Solids #1: Diamagnetism 
  

Magnetic effects in solids go back in history far before electric effects, back to the 
ancient civilizations.  The reason for this is simple: ferromagnetism - the magnetic analogue of 
ferroelectricity – is naturally occurring (particularly in a iron ore called magnetite) and is very 
strong.   Whereas two ferroelectric samples placed side-by-side will have a very weak 
interactive force, two ferromagnetic samples can interact so strongly as to “fly” together or 
apart, depending on their orientation.  One of our goals in covering ferromagnetic effects is to 
explain this fascinating phenomena – a phenomena that was the basis for the first recorded 
electromagnetic device in history – the magnetic compass !  We will see that ferromagnetism is 
so strong because of a “hidden” nonclassical force – the quantum-mechanical interaction 
between particle spins.   Unfortunately for ferroelectrics, no such interaction occurs, so that 
they are stuck with the relatively weak classical interaction between electric dipoles. 

 Another important distinction between magnetic and electric effects is the nature of the 
fundamental particles.  In electric effects, there exists monopoles (i.e., negative electrons and 
positive protons) and dipoles (positive-negative pair).  This creates the important distinction 
between conductors (dominated by monopoles) and insulators (dominated by dipoles) in 
response to externally applied electric fields.  In magnetic effects, there are only dipoles.1  But 
unlike electric effects, the dipoles originate from two fundamentally-different sources: (1) 
electrons in orbital motion, and (2) particle spin.  While both are similar forms of angular 
momentum, they have radically different interactive strengths and, therefore, lead to different 
macroscopic effects.  Specifically, electronic orbital motion leads to true diamagnetism, 
unpaired spins usually lead to paramagnetism, and under special conditions (to be defined 
later) create ferromagnetism. 

As in insulating electric materials, the fundamental quantity in magnetic quantities is 
the atomic magnetic dipole, m.  The definition of m and the other important quantities in 
magnetic solids follow by analogy with electric quantities: 
    p q d= ⋅

rr            m i A= ⋅
rr    

            
              charge   separation                          current   area 
  

E B→
r r

 magnetic induction 
   

eP M→
r r

 magnetization   

where ,M n m m i A= ⋅ = ⋅
rr r r    

  
                                                              
    number per unit volume 

 
    A →

r
area vector (points along perpendicular direction to  
current loop according to right-hand rule) 

                                                 
1  The search for magnetic monopoles has proceeded, off-and-on, for over a century.  One of the more recent 
endeavors was conducted by Prof. L. Alvarez of of  the Physics Dept. at U.C. Berkeley while the author was an 
undergraduate there in the early 1970s.  Unfortunately, all such endeavors have failed. 
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Fig. 1.  Classical magnetic dipole 
with area A and current i.  
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e mχ χ→  magnetic susceptibility:  0m
in in

dM dM
dH dB

χ µ≡ =
r r

r r or 
0

m inBM χ
µ

=
r

r
 in most materials,   

the exception being ferromagnets. 
 

0mχ >  : with permanent magnetic dipoles ⇒  paramagnetic 

1mχ >> : with ordered permanent dipoles⇒  ferromagnetic  

 0mχ < : diamagnetic 

 Recall that in electrostatic phenomenology, there was no true diaelectric response 

(“dielectric” meant simply that the solid opposed the flow of electric current).  But in magnetic 

phenomena, there is a true “dia”response, meaning that the internal magnetization is opposite in 

direction to the internal magnetic field.  Hence, there is a distinct possibility of negative 

magnetic susceptibility. 

And as in electrostatics we have a built-in feedback loop (see diagrams above) between the 

microscopic and the macroscopic levels.  In other words, there is a “local” magnetic induction 

that the atomic magnetic dipoles sense, and that can be different than the macroscopic induction 

Bin inside the solid. 

 

(1) Sample Geometrical Effects 

As in the “depolarization” effect of electrostatics, there is a screening of the internal 

magnetic induction owing to dipoles (current loops) that build up on the surface of the 

sample.  These surface current always tend to reduce the internal induction to a degree that 
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depends on the shape of the sample.  If we write 1B
r

 as the “response” induction created by 

the surface currents, then the mascroscopic 

induction inside the solid is given by 

0 1 0 0inB B B B N Mµ= + = −
r r r r r

   

1
3

N =  for sphere;     1N =  for slab 

where N is the depolarization factor. 

(2) Microscopic Effects 

Magnetostatic analysis shows that 

0 3local in
MB B µ= +
r

r r
 

This is the magnetic analog of the Lorentz condition for dielectric and, again, only approximate. 

In general:  

0local inB B b Mµ= +
r r r

 

1 1
3

b< <
% %

 

The microscopic connection to the macroscopic is, again, just the sum over atomic dipoles: 

( )0m local m inM nm n B n B b Mα α µ= = = +
r r r rr

 

(analogous to e localP np n Eα= =
r rr ) 

where αm  is the magnetic polarizability.  So we can write          

( )01 m m inM n b n Bα µ α= − =
r r
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As in the calculation of the electric polarizability (for atomic, ionic, and ferroelectric 

responses), the calculation of αm is a great exercise in microscopic physics.  We will do it 

separately for the diamagnetic, paramagnetic, and ferromagnetic responses. 

 

 Note:  0µ  is in numerator 

1B
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Fig. 2.  Relative orientation of 
response induction B1 and 
external induction B0 for a simple 
(ellipsoidal) geometric shape. 
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Classical model of atomic diamagnetism. 

 

The much greater mobility of electrons compared to protons creates a generic magnetic response 

analogous to the atomic polarizability derived for electrostatics.  We start by assuming that the 

electrons execute circular orbits around a fixed nucleus.   To maintain the orbits, there must be a 

centripetal (inward radial) force 

 ( )
2

2 2
0

v 2e e
tot e

m mF R f m R
R R

π ω= = ⋅ =  

where frot is the rotational frequency.   For such an orbit, without 

there is a built-in magnetic moment along the z axis of 

20ˆ ˆ( )
2zm i A z e R zω π
π

= ⋅ ⋅ =
r

.   

This assumes that the orbit is occurring in the equatorial plane as shown in Fig. 3, moving with 

negative helicity with respect to the velocity vector and the z axis.2    

But as in the case of electrostatics, an analysis of real atoms must start with a three-

dimensional distribution of charge, not just an orbit.  The simplest model assumes a spherical 

charge distribution that can be built up from circular orbits by a taking a vector sum of a very 

large number of such orbits in random orientation.  This can be expressed mathematically by 

pointing each area vector along the radial vector ˆA A r= ⋅
r

, so that ˆm i A r= ⋅ ⋅
r  (recall that in 

spherical coordinates r̂  by itself can be pointing in any direction until θ and φ are specified).  

We get the total magnetic moment by summing over θ in spherical coordinates at an arbitrary 

value of φ, φ0 , with equal weighting at all angles. 

2 2

0 0
0 0

ˆ ˆ ˆ ˆ( sin cos sin sin cos ) 0totm iArd d iA x y z d
π π

θ ϕ θ ϕ θ ϕ θ θ= = + + =∫ ∫
r

 .3 

                                                 
2 “Helicity” pertains to the direction of rotation of a physical quantity with respect to a chosen axis.  Right-hand-
circular (RHC) means that when the thumb of the right hand points along the chosen axis, the fingers wrap along the 
rotation of the chosen variable.  So while Fig. 3 above is RHC with respect to the z axis and electrical current, it is 
left-hand circular (LHC) with respect to the z axis and electron velocity. 
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Fig. 3.  
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Important points:  to achieve a spherical distribution starting with 

one orbit, we integrate over θ  from 0 to 2π;  we do not need to 

integrate over φ because this is taken care of by the rotating 

current in the orbit. 

From the zero result, there is no built-in magnetic dipole from a 

rotating spherical charge distribution.  This is intuitively obvious. 

With an external magnetic field applied, the situation changes.  There is now a Lorentz 

force on the electron that is always given by 

F e Bυ= − ×
r rr  

Without loss of generality, we can start with a current loop that lies in the equitorial plane of a 

spherical coordinate system such that A
r

 is along the z axis, as shown in Fig. 4.  The applied B 

must be along some direction 0 ˆB B r=
r

(θ,φ) such that it can be always be decomposed into a z 

component BZ and an equitorial component Bρ.  Clearly, the equitorial component will generate 

no net Lorentz force around an orbit since at any point on the circle, the Lorentz force is exactly 

cancelled (in amplitude and direction) by the Lorentz force on the diametrically-opposed side of 

the circle.  But the BZ component will generate an orbit-constant force 

ˆ ˆ ˆv (2 ) (cos )
2Z ZF e B e R B e R Bωρ π ρ ω θ ρ
π

= = = ⋅ ⋅ ⋅
r

  

where < > again denotes angular averaging, and B = | |B
r

 and ρ̂  is the radial vector lying in the 

equitorial plane and unspecified in direction (same as radial vector in cylindrical coordinates).   

Note that this force is centrifugal (i.e., directed outward from the center of rotation) if 0 < θ < 

π/2 or 3π/2 < θ < 2π, but is centripetal otherwise.  

                                                                                                                                                             
3 Using the useful identity from vector spherical coordinates, ˆ ˆ ˆ ˆsin cos sin sin cosr x y zθ ϕ θ ϕ θ= + +  

θ B
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Fig. 4.  
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To proceed further, we make the educated assumption that the Lorentz force does not 

change the orbit radius.4  And since the mass must stay fixed, then the Lorentz force can be 

counterbalanced by a change of the always centrifugal force of orbital motion only if there is a 

change in orbital frequency.  We denote this by the change in orbital frequency from ω0 to ω0 + 

∆ω, for which the equitorial-plane force counter-balance condition becomes: 

2 2
0 0 0( ) cose em R m R eR Bω ω ω ω θ+ ∆ = −  

If ∆ω << ω0, we can drop terms of order (∆ω)2  and obtain 

0 0cos 2 ee B mω θ ω ω− ≈ ∆ ⋅  

or     cos
2 e

eB
m

θω∆ ≈ −  

where 
2 e

eB
m

 is called the Larmor frequency – a pervasive quantity in magnetic calculations and 

magnetic-based systems, and derived before the development of quantum theory.  For example, 

it is a common quantity in (nuclear) magnetic resonance imaging (MRI). 

Of great interest is the new magnetic moment, if any, in the presence of B.  To calculate 

this we must, as with zero B, form a spherically-symmetric charge distribution by rotating the 

orbit in Fig. 4.  But common sense dictates that this is equivalent to keeping the orbit fixed and 

rotating B over all possible orientations via the random expression 0 ˆB B r=
r

.  This is a 

convenient trick because we already know that the Lorentz force only depends on BZ as B0cosθ 

where, again, θ is the angle between B
r

and A
r

.  So the total magnetic dipole moment is,  

2

0

ˆ(1/ 2) sin= ⋅ ⋅∫
r

totm e R r d
π

ω θ θ  

                                                 
4 An assumption justified by the shell model of electronic orbitals via the Pauli exclusion principle. 
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This is slightly different than the case for B = 0 because the orbit is staying fixed and the magnetic 

induction is being rotated down at an arbitrary value of φ = φ0.    Hence, we need to multiply by 

sinθ, the Jacobian in spherical coordinates.  This leads to 

2
0 0 0

0

ˆ ˆ ˆ(1/ 2) ( ) ( sin cos sin sin cos )sin= + ∆ ⋅ + +∫
r

totm e R x y z d
π

ω ω θ ϕ θ ϕ θ θ θ  

= 0  + 2
0 0 0

0

ˆ ˆ ˆ(1/ 2) ( / 2 )cos ( sin cos sin sin cos )sin− ⋅ + +∫ ee eB m R x y z d
π

θ θ ϕ θ ϕ θ θ θ  

from integral tables we have 
3

2

0 0

cos 2sin cos
3 3

d
ππ θθ θ θ −

⋅ = =∫   and   2

0

sin cos 0d
π

θ θ θ⋅ =∫  

So we get   
2 2

2 20 02 ˆ ˆ
4 3 6

= − = −
r

e e

e B e Bm R z R z
m m

 

The fact that this is nonzero and negative means that the response of the spherical current orbit is 

truly “dia”magnetic. 

Note that the direction of the magnetic moment is exactly along the z axis.  This is 

because of the trick we invoked of fixing the orbit and rotating B
r

.  By deduction, if we had kept 

the magnetic induction fixed and rotated the orbit to all possible orientations, then the magnetic 

moment would have ended up pointing along B
r

.  This an important bit of deduction for all 

magnetic-field effects with atoms.  Since there is an arbitrariness in the orientation of the 

electron orbits in any isolated atom (related to the point-like nature of the nucleus), then the 

external magnetic induction removes this arbitrariness and defines a preferred direction in space.  

By convention, the direction of B
r

 is usually set along the ẑ  axis in spherical coordinates.  This 

allows us to determine the electronic magnetic polarizability as 
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2 2

6
−

≡ =
r

rm
e

m e R
mB

α   

an expression that makes it clear that the MKSA units for αm are [Cb2-m2/KG].  It should also be 

compared to the classical expression we previously derived for the atomic electric polarizability, 

αe = 4πε0R3 .  As in the electrostatic case size matters, although not as much for diamagnetism as 

for the electric case.  The most important difference is the sign.  Our analysis predicts that all 

atoms contribute a diamagnetic effect (i.e., χm negative) in contrast to the paraelectric effect (i.e., 

χe positive) they display from electrostatics. 

Refinements to Diamagnetic Model: 

(1) It is easy to deduce that we should get one unit of this polarizability for each electron 

orbit in an atom, of radius Ri.  So we can generalize to get the total atomic polarizabilty 

by,     
2 2

,
1 1 4

N N
i i

m tot
i i e

m e R
mB

α
= =

−
≡ =∑ ∑

r

r  

Knowing the polarizability, we can find go back to the macroscopic level and find the 

magnetic susceptibility, 

2 2
0

0 1

2 20
0

1

6

1 1 6

N

i e
m i

m N
m

i e
i

n e R m
n
n b nb e R m

µ
α µχ
α µ µ

=

=

−
= =

− +

∑

∑
 

where n is the density of atoms in the solid. 

___   ___    __________________________ 

Example: Silicon, 14 electrons per atom, 3 10 3 28 38 8 (5.43 10 ) 5 10n a m m−= = × = × , 

7
0 4 10 ( )MKSAµ π −= × .  From the section on atomic polarizability, we have for silicon an 

average radius of the electron cloud of <ρ> ~ 1.5 Å   ⇒ αm,tot = 



ECE215B/Materials206B      Fundamentals of Solids for Electronics        E.R. Brown/Spring 2008 
 

9 
 

14
2 2 2 2

1
6 14 / 6i

i
e m e mρ ρ

=

≈ ⋅ < >∑ = 1.5x10-27.   And  , 0m totn α µ⋅ ⋅ = 9.3x10-5 .  This is so much 

less than unity that the Lorentz-condition term in the denominator of χm above can be ignored.  

Hence χm ≈ - , 0m totn α µ⋅ ⋅ = -9.3x10-5.    This is typical of atomic susceptibilities in solids… not 

large enough to be important in normal electronics, but large enough to be measurable. 

Quantum Mechanical Derivation: The Landau Formalism  

We start with the fact that there is a diamagnetic term in the electronic Hamiltonian. 

    ( )
2

2

2 2magnetic
je eH A A A
m m

= ∇ ⋅ + ⋅∇ +
r rr rh

   

where      B A≡ ∇×
rr r

 

In a uniform field,  

Ax = -(1/2) x B 

      Ay = 1/2 y B       Landau gauge 

Az = 0 
2 2 2 2

2 2 22
4 4

⇒ = < + >= < >
e B e Bnd term x y r

m m
 

But for a three-dim charge distribution, we should replace r by R, the mean radius for a 

uniformly filled spherical shell.  The relationship between the two quantities is simply 2 23
2

=R r .  

Hence,    
2 2

0 ˆ
6

i
i

e

e Bm z
m

ρ−
=

r
, and

2 2

, 6
i

m i
e

e
m
ρα −

= .   

 

   
2 2 2 2

2 2 2
2 1'

8 6
e B e BH x y r

m m
ψ ψ< >= < + >= < >  

Since Umag = -B⋅(MV) 
2

2

6
dU e BM V r
dB m

−
⋅ = = < >  

So quantum result is the same as classical !   It just brings a different interpretation of  <r2>. 


