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Magnetostatics #2 

Paramagnetism 

• Seldom is there the spherically symmetric distribution of charge in solids that creates zero 

built-in magnetic moment and just a small diamagnetic response. 

• Usually, there is a built-in magnetic moment.  Two types are prevalent: 

(1) orbital dipole: lmr  , and (2) spin dipole: smr  

• Atoms with net orbital or spin angular momentum can have large paramagnetic effect.  (e.g. 

atoms with partially filled inner shells: transition elements and rare earths). 

Best example is atoms with an odd number of electrons so one spin is unpaired  

Fundamental unit for magnetic dipoles is the Bohr magneton = magnetic moment for ground 

state of hydrogen.  
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But for Bohr quantization rules: 
m r L nυ ⋅ = = h          n = 1, 2, 3, … 

So for ground state, 0m r m aυ υ= = h   and 
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So for built-in magnetic dipoles, we write 
,Bgµ= − = +

rr r rrm J J L S  
          

   
Note: minus sign because m defined in terms of current, L in terms of electron motion  
 
g →  gyromagnetic ratio  ≈ 2 for electron spin;  ≈ 1 for orbital angular momentum. 
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Fig. 1. 



ECE215B/Materials206B      Fundamentals of Solids for Electronics        E.R. Brown/Spring 2008 
 

2 
 

local B local j B localPotential energy m B g J B m g Bµ µ= − ⋅ = ⋅ =
r r rr

.  That is, for J pointed anywhere 

in the upper hemisphere (polar axis defined by direction of Blocal),  the potential energy is 

positive.  And for J pointed anywhere in the lower hemisphere, the potential energy is negative. 

For a single spin, 1
2jm = ± , g = 2 ( e.g. single electron) , Bµ=

r| m |  

Hence, PE B localU Bµ= ± ⋅ , the + sign meaning that the spin is pointed 

along the B
r

 axis.  For spin ½, we have two possible energy values, 

1 BU Bµ= −  2 BU Bµ= .  These are conveniently represented by the 

energy diagram to the right: 

 

Since spins are hidden variables within atoms and atoms are generally distinguishable, 

we can apply the Maxwell-Boltzmann statistics:  probability of magnetic moment being aligned 

along B: 
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Thus, the mean magnetic dipole is: 1 1 2 2 1 2 ˆ( )Bm p m p m p p zµ= + = −
r r r
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ˆ( tanh )B B BB k T zµ µ= ⋅  

Simple picture of two possible energy states (Fig. 3):  

High energy state: BU m B Bµ= − ⋅ =
rr  

Low energy state: BU m B Bµ= − ⋅ = −
rr    
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Fig. 2. 
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High-temperature limit: 1B BB k Tµ << : 
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For more general total angular momentum J, and according to quantum mechanics, mj has 2J+1 

equally spaced levels:  

B j BU m B g J B m g Bµ µ= − ⋅ = ⋅ =
r r rr  

For example: if the total angular momentum quantum number γ = 3/2, mj = -3/2, -1/2, ½, and 3/2, 

so that  
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It can be shown that this becomes: 

| | ( )B Jm g B xγ µ< > = ⋅ ⋅
r

.  

where BJ is called the Brillouin function and g is the Lande g factor, and  

     B Bx g B k Tγµ=  

2 1 (2 1) 1( ) coth coth( )
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J J x xB x
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( )B J
m
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gJ B x
B
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In high-temperature limit we use the Taylor expansion coth(x) ≈ 1/x to get 
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In an advanced course on Quantum Mechanics it can be shown: 
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Example: atom with single unpaired spin 

2
0m B Bn k Tχ µ µ=  23 20.93 10B A mµ −= × −         28 35 10 , 300n m T K× =  

31.31 10 @300m Kχ −⇒ ≈ ×   

This is substantially stronger in magnitude than the diamagnetic for such an atom ! 

For partially filled inner shell atoms (e.g. transition elements), the J
r

is large and χm tends to be 

even larger, up to values of ~5x10-3. 

Ferromagnetism 

 We derived the relation for the ferroelectric effect from relationships between 

microscopic and macroscopic fields.  This also works for ferromagnetic materials 
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Take, for example, spin system where 2
m local B BM nm n B n k Tα µ= ≈ =

r rr
.  So, 

2
m B Bk Tα µ=  

And ferromagnetic condition is: 

2
0 1B

B

n b
k T

µ µ
≥   or  2

0B Bn k T bµ µ≥  

So at T = 300 K:   320.38 10n b> ×  

Recall b has max value of 1.0 in classical magnetostatics: 

So the minimum value is 31 33.8 10n m> ×  ; 25 3(3.8 10 )cm× .  Clearly this is much larger than 
occurs commonly in solids. 
 
So Pierre Weiss theorized (and Heisenberg proved) that there is a big contribution to b from 

spins.  This can be quantified by: 

0local in bµ= +
r r r
B B M  

with the possibility that 1b >> . 

Take, for example, Nickel, fcc lattice a = 3.52 Å  

30 28 3
3

4 0.092 10 9.2 10
(3.52)

n m= = × = ×  

So,  32 280.38 10 9.2 10 413b > × × =  to satisfy ferromagnetic condition. 
 
Simple Model for Ferromagnetism 

Recall temperature dependent M for spin 1/2 system: 

  tanhB B local BM n B k Tµ µ=   (paramagnetic) 

But ferromagnetic spontaneous response requires: 

  0local dµ=
r r
B M even when 0 0B =  

0 , 0local d dµ = >
r r
B M  
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0 0 0 0 0 0 0( ; ( )in local inN N b M N b dµ µ µ µ µ µ= − = − = + = − + ≡
r r r r r r r r r
B B M M B B M M  

So we have:   0tanh( )B
B

B

d MM n
k T

µ µµ ⋅
=    

This is an implicit equation in M so can be solved by plotting the left and right sides separately 

and then looking for intersections.  

As expected:  M1(T1) > M2(T2) > M3(T3)  for T1 < T2 < T3 

And eventually the intersection point goes to T = TC where M → 0. 

The full curve looks as shown below: 

 

                          M  Ferromagnetic → Paramagnetic phase 

        2nd-order phase transition          

often well fit by: 

(1 )s cM M T T= − n             Tc     T 

As in ferroelectrics, susceptibilities often are singular 
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Often well fit by:
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Ferromagnetic elements   TC 
  Fe   1043 
  Co   1388 
 Ni    627 
 Gd   292 
Dy   88 

 
And as with ferroelectrics, all ferromagnetic solids display a hysteresis loop. 

            M                         MS (saturation magnetization) 

 

          H (magnetic field) 
   
      
     Hc (“coercive” field)       

 
As in ferroelectrics, the spontaneous polarization is so strong that it takes significant external B 

(or H) to overcome it.  So all ferromagnets show saturation. 

Figure of merit is energy density: 

From thermodynamics 0 ( )mdU H d MVµ= ⋅
r r

 

0'm C SU H Mµ≈  if B is uniform 

So for Alnico-V (an alloy of: 51% Fe , 8% Al, 14% Ni, 24% Co, 3% Cu): 

 

µoHC −> coercivity ~0.1 T [MKSA; recall 104 Gauss = 1 T] 

µoMS −> saturation ~ 1.25 W/m2 = 1.25 T .     So, 

'
0 0 3

0

0.125(0.1/ )(1.25)m C S
JU H M

m
µ µ

µ
≅ ≈ ≈ ≈ 0.1 J/cm3 

Alnico V:  51% Fe 8% Al  14% Ni 

   24% Co 3% Cu 

Other strong ferromagnets are rare-earth cobalt and iron-oxide alloys (e.g. SmCo5, FeOFe2O3). 

In the past couple of decades, there has been a generation of even stronger magnets, the so-called 

“super magnets” made from an alloy of iron, neodynium, and boron. 

 


