Magnetostatics\#3

Refinement to Magnetic Energy Density

In Notes\#2 we predicted a very large energy density, up to $0.1 \mathrm{~J} / \mathrm{cm}^{3}$ (or $100 \mathrm{~kJ} / \mathrm{m}^{3}$) for the energy density in a "garden variety" ferromagnetic material - AlNiCo. In reality, the energy density is less than this as shown in Table I. The reason for this is that the hysteresis curve "sags" as the magnitude of H is reduced.toward zero because of the magnetic domains in all ferromagnetics (more on this later). So the figures-of-merit for ferromagnets become the coercive field, H_{C}, and the remanent magnetic induction B_{R} as shown in the more realistic hysteresis curve of Fig. 7.12

(a)

(b)

Fig. 7.12. (a) Energy Density for Common Ferromagnetic Materials at Room temperature. The vertical axis is in units of $\mathrm{KJ} / \mathrm{m}^{3}$ (b) more realistic hysteresis curve for ferrogmanetics

Spin-Spin Interaction

To explain ferromagnetism we needed to make the term $b \boldsymbol{M}$ roughly 10^{4} larger than a classical magnetic dipole having the same angular momentum as S . Heisenberg explained this in terms of the exchange phenomenon,

$$
\begin{equation*}
U_{m}=-\boldsymbol{m}_{i} \cdot \boldsymbol{B}_{\text {local }} \rightarrow 2 \cdot I_{E} \cdot \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j} \tag{7.63}
\end{equation*}
$$

where I_{E} is the exchange integral ($\approx 12 \mathrm{meV}$ in iron, for example). Exchange is strictly a quantum mechanical effect. The Pauli exclusion principle prevents particles in the same spin state from being in the same location in space. Therefore, the spins must approach counter-alignment as d decreases, as shown in Fig. 7.13. If the particles are charged, the decrease in d is equivalent to an increase in energy because electro-static potential increases as d decreases (recall $V=\mathrm{q}^{2} / d$ for Coulomb potential, like charges). Again, we have an example of how important the Pauli exclusion principle is in the microscopic behavior of solids.

In a nearest neighbor approximation:

$$
\begin{equation*}
U=-2 \cdot \mathrm{I}_{E} \cdot \boldsymbol{S}_{p} \cdot\left(\boldsymbol{S}_{p-1}+\boldsymbol{S}_{p+1}\right), \quad \mathrm{p} \rightarrow \text { atomic index } \tag{7.64}
\end{equation*}
$$

For spins:

$$
\begin{equation*}
\boldsymbol{m}_{p}=-g \mu_{B} \boldsymbol{S}_{p} \tag{7.65}
\end{equation*}
$$

Fig. 7.13. The physical behavior of neighboring spins as a function of their spatial separation d , called the exchange interaction. At close separation, the spin vectors must be opposite in direction to comply with the Pauli exclusion principle. At greater separation, they can be parallel.

So we can rewrite the energy expression as:

$$
\begin{aligned}
& U=2 \cdot I_{E} \boldsymbol{S}_{p} \cdot\left(-\boldsymbol{S}_{p-1}-\boldsymbol{S}_{p+1}\right) \\
& U=-\boldsymbol{m}_{p}\left(\frac{-2 \cdot I_{E}}{g \mu_{B}}\right)\left(\boldsymbol{S}_{p-1}+\boldsymbol{S}_{p+1}\right) \\
& U \equiv-\boldsymbol{m}_{p} \cdot \boldsymbol{B}_{E, P}
\end{aligned}
$$

where $\boldsymbol{B}_{E, P}$ is the "exchange" magnetic induction. We can now derive the dynamic equation of motion. From classical mechanics,

$$
\begin{equation*}
d \mathbf{L} / d t=\tau \text { (torque) } \tag{7.67}
\end{equation*}
$$

In magnetic materials: $\boldsymbol{\tau}=\boldsymbol{m} \cdot \boldsymbol{B}_{e}$. We make the correspondence $\boldsymbol{L} \rightarrow h \cdot \boldsymbol{S}$ to get:

$$
\begin{aligned}
& \hbar \frac{d \boldsymbol{S}_{p}}{d t}=-g \mu_{B} \boldsymbol{S}_{p} \times\left(\boldsymbol{S}_{p-1}+\boldsymbol{S}_{p+1}\right)\left(\frac{-2 I_{E}}{g \mu_{B}}\right) \\
& \frac{d \boldsymbol{S}_{p}}{d t}=\frac{2 I_{E}}{\hbar} \boldsymbol{S}_{p} \times\left(\boldsymbol{S}_{p-1}+\boldsymbol{S}_{p+1}\right)
\end{aligned}
$$

To proceed further, we decompose this equation into Cartesian coordinates making the z axis the nominal alignment axis of each spin. We get:

$$
\begin{gather*}
\frac{d S_{p}^{x}}{d t}=\frac{2 I_{E}}{\hbar}\left[S_{p}^{y}\left(S_{p-1}^{z}+S_{p+1}^{z}\right)-S_{p}^{z}\left(S_{p-1}^{y}+S_{p+1}^{y}\right)\right] \tag{7.69}\\
\frac{d S_{p}^{y}}{d t}=\frac{2 I_{E}}{\hbar}\left[S_{p}^{z}\left(S_{p-1}^{x}+S_{p+1}^{x}\right)-S_{p}^{x}\left(S_{p-1}^{z}+S_{p+1}^{z}\right)\right] \tag{7.70}\\
\frac{d S_{p}^{z}}{d t}=\frac{2 I_{E}}{\hbar}\left[S_{p}^{x}\left(S_{p-1}^{y}+S_{p+1}^{y}\right)-S_{p}^{y}\left(S_{p-1}^{x}+S_{p+1}^{x}\right)\right] \tag{7.71}
\end{gather*}
$$

Now in classical sense, we can assume that S_{p}^{y} and S_{p}^{x} are much less in magnitude than $S_{p}{ }^{z}$ and that $S_{p}^{z} \approx S_{p-1}^{z} \approx S_{p+1}^{z} \equiv S_{p}$ (to first order). Thus we can ignore terms where S_{p}^{x} and $S_{p}{ }^{y}$ occur together. We find

$$
\begin{gather*}
\frac{d S_{p}^{x}}{d t}=\frac{2 I_{E}}{\hbar}\left[2 S_{p}^{y} S_{p}-S_{p}^{z}\left(S_{p-1}^{y}+S_{p+1}^{y}\right)\right] \tag{7.72}\\
\frac{d S_{p}^{y}}{d t}=\frac{2 I_{E}}{\hbar}\left[S_{p}\left(S_{p-1}^{x}+S_{p+1}^{x}\right)-S_{p}^{x}\left(2 S_{p}\right)\right] \tag{7.73}\\
\frac{d S_{p}^{z}}{d t}=\frac{d S_{p}}{d t}=0 \tag{7.74}
\end{gather*}
$$

Spin Wave Equation (Optional for 2008)

As equation (7.74) is a cross-coupled set of linear difference equations; we seek lattice-wave like traveling waves for the solution:

$$
\begin{equation*}
S_{p}^{z}=S_{p} ; S_{p}^{x}=\operatorname{Vexp}[j p k a] \exp [-j \omega t] ; S_{p}^{y}=W \exp [j p k a] \exp [-j \omega t] \tag{7.75}
\end{equation*}
$$

Substituting the trial solutions of (7.75) into (7.72) above, we get

$$
\begin{equation*}
-j \omega V \exp [j(p k a-\omega t)]=\frac{2 I}{\hbar}\left[2 S_{p} W e^{j(p k a-\omega t)}-S_{p} W\left[e^{j[(p+1) k a-\omega t]}+e^{j[(p-1) k a-\omega t]}\right]\right] \tag{7.76}
\end{equation*}
$$

or

$$
\begin{equation*}
-j \omega V=\frac{2 I_{E}}{\hbar}\left[2 S_{p} W-S_{p} W\left(e^{j k a}+e^{-j k a}\right)\right] \tag{7.77}
\end{equation*}
$$

or

$$
\begin{equation*}
-j \omega V=\frac{4 I^{E}}{\hbar}\left[S_{p} W(1-\cos k a)\right] \tag{7.78}
\end{equation*}
$$

Similar substitution of (7.75) into (7.73) yields (after simple algebra)

$$
\begin{equation*}
-j \omega W=\frac{4 I}{\hbar}\left[S_{p} V(\cos k a-1)\right] \tag{7.79}
\end{equation*}
$$

The preceding two equations can be written in matrix form

$$
\left[\begin{array}{cc}
+j \omega & \frac{4 I_{E} S_{p}}{\hbar}(1-\cos k a) \tag{7.80}\\
\frac{-4 I_{E} S_{p}}{\hbar}(1-\cos k a) & +j \omega
\end{array}\right]\left[\begin{array}{l}
V \\
W
\end{array}\right]=0
$$

From linear algebra, we know that a non-trivial solutions exist only if the matrix is "singular", i.e., does not have an inverse. But a lack of inverse also means that the determinant must vanish:

$$
\begin{gather*}
\left.\Rightarrow-\omega^{2}+\left[\frac{4 I_{E} \cdot S_{p}}{\hbar}(1-\cos k a)\right)\right]^{2}=0 \\
\omega=\frac{4 I_{E} S_{p}}{\hbar}(1-\cos k a) \tag{7.81}
\end{gather*}
$$

Also note that by substituting (7.79) into (7.78)

$$
\begin{equation*}
-j \omega V=\left[\frac{4 I_{E}}{\hbar} S_{p}(1-\cos k a)\right] \cdot[W]=j \omega W^{2} / V \tag{7.82}
\end{equation*}
$$

which implies

$$
\begin{equation*}
V=j W, \text { or } \mathrm{W}=-j V . \tag{7.83}
\end{equation*}
$$

So that S_{p}^{x} and S_{p}^{y} are 90° out of phase \rightarrow circular motion in x - y plane \rightarrow precession The "spin-wave" dispersion relation,

$$
\begin{equation*}
\omega=\frac{4 I_{E} S_{p}}{\hbar}(1-\cos k a), \tag{7.84}
\end{equation*}
$$

is very similar to that derived for lattice waves:

$$
\begin{equation*}
\omega^{2}=\frac{2 C}{m}(1-\cos k a) . \tag{7.85}
\end{equation*}
$$

But note the different exponent on the ω term in each. The ω^{2} term for spin waves makes the dependence on k near $k=0$ stronger (and nonlinear) for spin waves. We can see this analytically by Taylor expansion for small k :

$$
\begin{equation*}
\omega=\frac{4 I_{E} S_{p}}{\hbar}(1-\cos k a) \approx \frac{4 I_{E} S_{p}}{\hbar}\left[1-\left[1+\frac{(k a)^{2}}{2}+\ldots\right]\right] \approx \frac{2 I_{E} S_{p} k^{2} a^{2}}{\hbar}(k \ll a) . \tag{7.86}
\end{equation*}
$$

Similarly, as $k a$ approaches π (Nyquist wave vector) $d \omega / d k \rightarrow 0$ for the spin waves, just as for the lattice waves. But there is faster dependence on k. Right at the Nyquist wave

Fig. 7.14. Representative lattice-wave and spin-wave dispersion curves for the following parameters: Lattice wave: $\mathrm{C}=30 \mathrm{~N} / \mathrm{m}, \mathrm{M}=28 \mathrm{~m}_{\mathrm{p}}$, where m_{p} is the proton rest mass; Spin wave: $\mathrm{I}_{\mathrm{E}}=12 \mathrm{meV}$ (iron), $\mathrm{S}_{\mathrm{p}}=1$.
vector $k=\pi /$ a, we get $\omega=8 I_{E} S_{p} / \hbar-$ a convenient fact for doing statistical mechanics with the dispersion curve, as we will see below.

These points are illustrated in Fig. 7.14 that shows representative lattice-wave and spin-wave dispersion curves for the following parameters [lattice wave: $C=30 \mathrm{~N} / \mathrm{m}$, $M=28 m_{p}$, where m_{p} is the proton rest mass; spin wave: $I_{E}=12 \mathrm{meV}$ (iron), $\left.S p=1\right]$.

Spin-Wave Energy and Quantization: Magnons (Optional for 2008)

As in the analysis of lattice waves, it becomes very useful to analyze the total energy of spin waves (kinetic plus potential) with a thought towards their quantization and statistical mechanics. To do this we continue our classical thinking by applying an expression from classical rotational dynamics:

$$
\begin{equation*}
\text { Kinetic Energy }=\frac{\boldsymbol{L}^{2}}{2 I_{m}} \tag{7.87}
\end{equation*}
$$

Where L is the orbital angular momentum and I_{m} is the moment of inertia. Also we have,

$$
\begin{gather*}
K E=\frac{1}{2} I_{m} \omega^{2} \tag{7.88}\\
\Rightarrow I_{m}=\frac{|\boldsymbol{L}|}{\omega} \Rightarrow K E=\frac{1}{2}|\boldsymbol{L}| \omega
\end{gather*}
$$

If we make correspondence $|\boldsymbol{L}| \leftrightarrow\left|\boldsymbol{m}_{p}\right|=g \mu_{B} \boldsymbol{S}_{p}$, then

$$
\begin{gather*}
K E=\frac{+1}{2} g \mu_{B} S_{p} \omega=+2 g \mu_{B} S_{p}^{2} \frac{I_{E}}{\hbar}(1-\cos k a) \tag{7.89}\\
\text { Potential energy } \equiv \mathrm{PE}=-2 I_{E} \boldsymbol{S}_{p} \cdot\left(\boldsymbol{S}_{p-1}+\boldsymbol{S}_{p+1}\right) \tag{7.90}\\
U_{\text {total }}=K E+P E=2 g \mu_{B} \frac{I_{E}}{\hbar}(1-\cos k a) S_{p}^{2}-2 I_{E} \boldsymbol{S}_{p} \cdot\left(\boldsymbol{S}_{p-1}+\boldsymbol{S}_{p+1}\right) \tag{7.91}
\end{gather*}
$$

This looks very much like total energy for lattice waves in Chapter 4:4

$$
\begin{gather*}
\frac{1}{2} m \omega^{2} u_{s}=C(1-\cos k a) u_{s}=K E \tag{7.92}\\
\frac{1}{2} C\left(u_{s-1}-u_{s}\right)^{2}+\frac{1}{2} C\left(u_{s+1}-u_{s}\right)^{2}=P E \tag{7.93}
\end{gather*}
$$

Following a derivation similar to that for phonons, we can now show that the spin total energy has the form of a harmonic oscillator in Fourier transform (k) space. This is yet another example in solid-state of a "collective excitation" - a wave in real space that takes on
the form of a collection of independent harmonic oscillators in k space after Fourier transformation. As before, we can associate a fictitious massless particle with each independent mode. In the case of spin waves, we call this particle a magnon. The energy of each k -space mode, or magnon, is then given by

$$
\begin{equation*}
\Rightarrow U_{k}=\left(n_{k}+\frac{1}{2}\right) \cdot \hbar \omega_{k} \tag{7.94}
\end{equation*}
$$

where n_{k} is the number of magnons excited, or equivalently, the excitation amplitude of the associated spin wave.

Statistical Mechanics of Magnons (Optional for 2008)

Since I_{E} can be so large in ferromagnets, the energy stored in magnon modes is significant. As in phonons, magnons are indistinguishable and have zero mass. Therefore, they abide to photon and phonon statistics, i.e., the Planck function. The mean number of magnons in each mode at a bath temperature T is therefore given by

$$
\begin{equation*}
<n_{K}>=\frac{1}{\exp \left[\hbar \omega_{k} / k T\right]-1} \tag{7.95}
\end{equation*}
$$

And the total number of magnons in the solid is

$$
\begin{equation*}
N_{\text {total }}=\sum_{K}<n_{K}>=\int_{0}^{\omega_{\max }} D(\omega)<n_{K}>d \omega \tag{7.96}
\end{equation*}
$$

where $D(\omega)$ is the magnon density of states and $\omega_{\max }=8 I_{E} S_{p} / \hbar$. As usual, $D(\omega)$ is needed to convert the summation over k to an integral over ω. So it is best defined by a chain rule expansion:

$$
\begin{equation*}
D(\omega) d \omega=\frac{d N(k)}{d k} \frac{d k}{d \omega} d \omega \tag{7.97}
\end{equation*}
$$

where

$$
\begin{equation*}
N(k)=\frac{V}{(2 \pi)^{3}} \frac{4}{3} \pi k^{3} \Rightarrow \frac{d N}{d k}=\frac{V}{2 \pi^{2}} k^{2} . \tag{7.98}
\end{equation*}
$$

In the long-wavelength approximation:

$$
\begin{equation*}
\omega_{K}=2 I_{E} S_{p} k^{2} a^{2} / \hbar \tag{7.99}
\end{equation*}
$$

or

$$
\begin{gather*}
k=\sqrt{\frac{\hbar}{2 I_{E} S_{p} a^{2}} \sqrt{\omega_{K}}} \tag{7.100}\\
\frac{d k}{d \omega}=\frac{1}{2} \sqrt{\frac{\hbar}{2 I_{E} S_{p} a^{2}}} \omega_{K}^{-1 / 2} \tag{7.101}\\
D(\omega)=\frac{V}{4 \pi^{2}}\left(\frac{\hbar \omega_{k}}{2 I_{E} S_{p} a^{2}}\right)^{3 / 2} \omega_{k}^{1 / 2} d \omega \tag{7.102}
\end{gather*}
$$

In the low temperature limit $\hbar \omega_{K}>k_{B} T$, the Planck function has significant weight only at low k where the dispersion is quadratic. Hence we can extend $\omega_{\max } \rightarrow \infty$

$$
\begin{equation*}
N_{\text {total }} \cong \int_{0}^{\infty} \frac{V}{4 \pi^{2}}\left(\frac{\hbar}{2 I_{E} S_{p} a^{2}}\right)^{3 / 2} \frac{\omega_{k}^{1 / 2} d \omega}{\exp \left[\hbar \omega_{k} / k_{B} T\right]-1} \tag{7.103}
\end{equation*}
$$

let $x=\hbar \omega_{\mathrm{K}} / k_{B} T$,

$$
\begin{equation*}
N^{\prime} \equiv N_{\text {total }} / V=\frac{1}{4 \pi^{2}}\left(\frac{k_{B} T}{2 I_{E} S_{p} a^{2}}\right)^{3 / 2} \int_{0}^{\infty} d x\left(\frac{x^{1 / 2}}{e^{x}-1}\right) \tag{7.104}
\end{equation*}
$$

$$
\begin{align*}
& \text { Total energy }=\int_{0}^{\infty} D\left(\omega_{K}\right)\left(<n_{K}>+1 / 2\right) \hbar \omega_{K} d \omega \tag{7.105}\\
& U_{\text {total }} \approx \int_{0}^{\infty} \frac{V}{4 \pi^{2}}\left(\frac{\hbar}{2 I_{E} S_{p} a^{2}}\right)^{3 / 2} \frac{\hbar \omega_{K}^{3 / 2} d \omega}{\exp \left[\hbar \omega_{K} / k_{B} T\right]-1} \tag{7.106}
\end{align*}
$$

Again let $x=\hbar \omega_{K} / k_{B} T, d x=\hbar \omega_{K} / k_{B} T$, so that

$$
\begin{equation*}
U^{\prime}=\frac{k_{B} T}{4 \pi^{2}}\left(\frac{k_{B} T}{2 I_{E} S_{p} a^{2}}\right)^{3 / 2} \int_{0}^{\infty} d x \frac{x^{3 / 2}}{e^{x}-1} \tag{7.107}
\end{equation*}
$$

To simplify this we define a quantity A through $\omega_{K}=A k^{2} \equiv \frac{2 I_{E} S_{p} a^{2}}{\hbar} k^{2}$. This leads to

$$
\begin{equation*}
U^{\prime}=\frac{\left(k_{N} T\right)^{5 / 2}}{(\hbar A)^{3 / 2}}\left\{\frac{1}{4 \pi^{2}} \int_{0}^{\infty} d x \frac{x^{3 / 2}}{e^{x}-1}\right\} \tag{7.108}
\end{equation*}
$$

where

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d x \cdot x^{3 / 2}}{e^{x}-1} \approx 1.80 \text { from integral tables. } \tag{7.109}
\end{equation*}
$$

So in the end, we get a rather simple expression for the heat capacity

$$
\begin{align*}
& C_{V} \cong \frac{d U^{\prime}}{d T}=\frac{k_{B}\left(k_{B} T\right)^{3 / 2}}{(h A)^{3 / 2}}\left\{\frac{5}{8 \pi^{2}}(1.80)\right\} \\
& =\frac{k_{B}\left(k_{B} T\right)^{3 / 2}}{(h A)^{3 / 2}}(0.114) \text { per unit volume. } \tag{7.110}
\end{align*}
$$

It is informative to do a numerical example for iron at room temperature.
$I_{E}=11.9 \mathrm{meV}\left(\right.$ Kittel p. 446); a $=2.87 \mathrm{Ang}($ Kittel p. 23 $)$; and $S_{p}=1($ Kittel p. 446), so that

$$
\begin{equation*}
A \equiv \frac{2 I S_{p} a^{2}}{\hbar} \approx 2.97 \times 10^{-6} \tag{7.111}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{v} \approx 5.5 \times 10^{27} k_{B} / \mathrm{m}^{3} \tag{7.112}
\end{equation*}
$$

This is to be compared to the Dulong-Petit law as we did several times for phonons:

$$
\begin{equation*}
C_{v} \approx 3 N k_{B} . \tag{7.113}
\end{equation*}
$$

Iron crystallizes in a bcc structure with $n=\frac{N}{V}=\frac{2}{\left[(2.87) \times 10^{-10}\right]^{3}} \rightarrow n=8.46 \times 10^{28} / \mathrm{m}^{3}$.
Therefore, the law of Dulong-Petit predicts:

$$
\begin{equation*}
C_{v} \approx 2.54 \times 10^{29} \mathrm{k} / \mathrm{m}^{3} \tag{7.114}
\end{equation*}
$$

So the contribution to the total C_{v} of the spins is about 2% - small but not insignificant.

