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Magnetostatics#3 

 

Refinement to Magnetic Energy Density 

In Notes#2 we predicted a very large energy density, up to 0.1 J/cm3 (or 100 kJ/m3) for the 

energy density in a “garden variety” ferromagnetic material – AlNiCo.  In reality, the energy 

density is less than this as shown in Table I. The reason for this is that the hysteresis curve 

“sags” as the magnitude of H is reduced.toward zero because of the magnetic domains in all 

ferromagnetics (more on this later).  So the figures-of-merit for ferromagnets become the 

coercive field, HC, and the remanent magnetic induction BR as shown in the more realistic 

hysteresis curve of Fig. 7.12 
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Fig. 7.12.  (a) Energy Density for Common Ferromagnetic Materials at Room temperature.  The 
vertical axis is in units of KJ/m3 (b) more realistic hysteresis curve for ferrogmanetics 
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Spin-Spin Interaction 

To explain ferromagnetism we needed to make the term bM  roughly 104 larger than a classical 

magnetic dipole having the same angular momentum as S.  Heisenberg explained this in terms of 

the exchange phenomenon, 

 

 2m i local i jEU I→= − ⋅ ⋅ ⋅ ⋅Bm S S   (7.63) 

 

where I E  is the exchange integral (≈ 12 meV in iron, for example).  Exchange is strictly a quantum 

mechanical effect.  The Pauli exclusion principle prevents particles in the same spin state from 

being in the same location in space.  Therefore, the spins must approach counter-alignment as d 

decreases, as shown in Fig. 7.13.   If the particles are charged, the decrease in d is equivalent to an 

increase in energy because electro-static potential increases as d decreases (recall V = q2/d for 

Coulomb potential, like charges).  Again, we have an example of how important the Pauli exclusion 

principle is in the microscopic behavior of solids. 

In a nearest neighbor approximation: 

 

 ( )1 12 E p p pU − += − Ι +⋅ ⋅ ⋅S S S ,    p → atomic index (7.64) 

For spins: p B pg µ= −m S  (7.65) 
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So we can rewrite the energy expression as: 
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  (7.66) 

where BE,P is the “exchange” magnetic induction.  We can now derive the dynamic equation 

of motion.   From classical mechanics, 

 

 /d dt =L τ  (torque)  (7.67) 

 

In magnetic materials: e= ⋅m Bτ .  We make the correspondence h→ ⋅L S  to get: 
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  (7.68) 

 

 
 

d d d d dd d d d d  
Fig. 7.13. The physical behavior of neighboring spins as a function of their spatial separation d, called the exchange 
interaction.   At close separation, the spin vectors must be opposite in direction to comply with the Pauli exclusion 
principle.  At greater separation, they can be parallel. 



 

4 

To proceed further, we decompose this equation into Cartesian coordinates making the z axis 

the nominal alignment axis of each spin.  We get:  

 ( ) ( )1 1 1 1

2
− + − += + − +⎡ ⎤⎣ ⎦h

x
p y z z z y y

p p p p p p
EIdS

S S S S S S
dt

  

  (7.69) 
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Now in classical sense, we can assume that 
y

p
S and 

x

p
S are much less in magnitude than 

z
pS and that 

1 1

z z z

p p p pS S S S
− +

≈ ≈ ≡ (to first order).  Thus we can ignore terms where 

x
pS and y

pS occur together.  We find 
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Spin Wave Equation (Optional for 2008) 

As equation (7.74) is a cross-coupled set of linear difference equations; we seek lattice-wave 

like traveling waves for the solution: 

 

 ; ;z x y
p p p pjpka j t jpka j tS S S Vexp exp S Wexp expω ω= ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦= =   

  (7.75) 

 

Substituting the trial solutions of (7.75) into (7.72) above, we get  

 

 ( ) ( ) ( ) ( )1 12
2 j p ka t j p ka tj pka t

p p
Ij Vexp j pka t S We S W e eω ωωω ω + − − −⎡ ⎤ ⎡ ⎤− ⎣ ⎦ ⎣ ⎦⎡ ⎤⎡ ⎤− − = − +⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦h

   

  (7.76) 

 

or    

 
2 2 ( )jka jkaE

p p
Ij V S W S W e eω −⎡ ⎤− = − +⎣ ⎦h

 (7.77) 

or    

 ( )
4

1 cosp
EI

j V S W kaω− = −⎡ ⎤⎣ ⎦h
 (7.78) 

 

Similar substitution of (7.75) into (7.73) yields (after simple algebra) 
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4
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 (7.79) 

 

The preceding two equations can be written in matrix form 
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From linear algebra, we know that a non-trivial solutions exist only if the matrix is “singular”, i.e., 

does not have an inverse.   But a lack of inverse also means that the determinant must vanish: 
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Also note that by substituting (7.79) into (7.78) 

 

 ( ) [ ] 2 /
4

1 cosE
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I
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⋅
h

 (7.82) 

which implies       

 V = jW, or W = -jV.   (7.83) 

 

So that 
x
pS and 

y
pS are 90˚ out of phase → circular motion in x - y plane → precession 

The “spin-wave” dispersion relation,  

 

 ( )
4

1 cosE pI S
kaω = −

h
 ,  (7.84) 

 

is very similar to that derived for lattice waves:  
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 ( )2 2
1 cos

C
ka

m
ω = − .  (7.85) 

 

But note the different exponent on the ω term in each.  The ω2 term for spin waves makes the 

dependence on k near k = 0 stronger (and nonlinear) for spin waves.  We can see this 

analytically by Taylor expansion for small k:  
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Similarly, as ka approaches π (Nyquist wave vector) dω/dk → 0 for the spin waves, just as for 

the lattice waves.  But there is faster dependence on k.  Right at the Nyquist wave  
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vector k = π/a, we get /8 E pI Sω = h  - a convenient fact for doing statistical mechanics with 

the dispersion curve, as we will see below. 

These points are illustrated in Fig. 7.14 that shows representative lattice-wave and 

spin-wave dispersion curves for the following parameters [lattice wave: C = 30 N/m,  

M = 28 mp, where mp is the proton rest mass; spin wave: IE = 12 meV (iron), Sp = 1]. 

 

Spin-Wave Energy and Quantization: Magnons (Optional for 2008) 

As in the analysis of lattice waves, it becomes very useful to analyze the total energy of spin 

waves (kinetic plus potential) with a thought towards their quantization and statistical 

mechanics.    To do this we continue our classical thinking by applying an expression from 

classical rotational dynamics:  

 

 Kinetic Energy 
2

2 mI
=

L  (7.87) 
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Fig. 7.14.  Representative lattice-wave and spin-wave dispersion curves for the following parameters: 
Lattice wave: C = 30 N/m, M = 28 mp , where mp is the proton rest mass; Spin wave: IE = 12 meV 
(iron), Sp = 1. 
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Where L is the orbital angular momentum and Im is the moment of inertia.  Also we have,  
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If we make correspondence p B pgµ↔ =L m S  , then 
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 Potential energy ≡ PE  1 1
2 ( )E p p pI − += − +⋅S S S  (7.90) 

 

 ( ) 1 1
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  (7.91) 

 

This looks very much like total energy for lattice waves in Chapter 4:4 

 

 ( )21
1 cos

2 s sm C ka KEu uω = − =  (7.92) 

 

 ( ) ( )1 1

2 21 1
2 2s s s sC C PEu u u u− +− + − =  (7.93) 

 

Following a derivation similar to that for phonons, we can now show that the spin total 

energy has the form of a harmonic oscillator in Fourier transform (k) space.  This is yet 

another example in solid-state of a “collective excitation” – a wave in real space that takes on 
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the form of a collection of independent harmonic oscillators in k space after Fourier 

transformation.  As before, we can associate a fictitious massless particle with each 

independent mode.  In the case of spin waves, we call this particle a magnon.  The  

energy of each k-space mode, or magnon, is then given by 

 

 1
2k k kU n ω⎛ ⎞⇒ = +⎜ ⎟

⎝ ⎠
⋅h  (7.94) 

 

where nk is the number of magnons excited, or equivalently, the excitation amplitude of the 

associated spin wave. 

 

Statistical Mechanics of Magnons (Optional for 2008) 

Since IE can be so large in ferromagnets, the energy stored in magnon modes is significant.  

As in phonons, magnons are indistinguishable and have zero mass.  Therefore, they abide to 

photon and phonon statistics, i.e., the Planck function.  The mean number of magnons in each 

mode at a bath temperature T is therefore given by 

 

 
[ ]
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 (7.95) 

 

And the total number of magnons in the solid is 
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0
( )K Ktotal

K
N n D n d

ω
ω ω= < >< > =∑ ∫  (7.96) 

 

where D(ω) is the magnon density of states and /max 8= hpEI Sω .  As usual, D(ω) is needed 

to convert the summation over k to an integral over ω.  So it is best defined by a chain rule 

expansion: 
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In the long-wavelength approximation:  
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In the low temperature limit K Bω > k Th  , the Planck function has significant weight only at 

low k where the dispersion is quadratic.  Hence we can extend ∞→maxω  
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let Bx k Tω= h K ,  
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 Total energy
0

( )( 1/ 2)K K KD n dω ω ω
∞

< > += ∫ h  (7.105) 
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Again let Bx k Tω= h K , Bdx k Tω= h K , so that 
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To simplify this we define a quantity A through
2

2 22
= ≡

h

E p
K

I S a
Ak kω  .  This leads to 
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where  
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So in the end, we get a rather simple expression for the heat capacity 
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It is informative to do a numerical example for iron at room temperature. 
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IE = 11.9 meV (Kittel p. 446); a = 2.87 Ang (Kittel p. 23); and Sp = 1 (Kittel p. 446), so that 

 

 
22

2.97 ×10p -6IS a
A ≡ ≈

h
 (7.111) 

and  

 27 35.5×10v BC k m≈  (7.112) 
 

This is to be compared to the Dulong-Petit law as we did several times for phonons:  

 

 3v BC Nk≈  .  (7.113) 

 

Iron crystallizes in a bcc structure with 310 ]10)87.2[(
2

−×
==

V
Nn → 28 38.46×10 /n m= .   

Therefore, the law of Dulong-Petit predicts: 

 

 29 32.54 ×10vC k m≈  (7.114) 

 

So the contribution to the total Cv of the spins is about 2% - small but not insignificant. 

 

 


