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Kinetic Transport Theory#2 

Clarification of kinetic theory  

A gradient of temperature in a solid generally creates a flux of kinetic energy, often 

called thermal current or heat transfer.  Often this heat transfer occurs by charged particles, so 

there can also be electrical current from the temperature gradient, depending on the boundary 

conditions.  As we will see shortly, thermal current is considerably more complicated in the 

kinetic formalism than electrical current because particles having different velocity directions 

contribute differently to the final result.  So thermal current forces us to take a deeper look at 

the foundation of kinetic theory, particularly the nature of the particles. 

We have stated previously that kinetic theory treats all the particles as statistically 

independent and interacting with the temperature “bath” through randomizing collisions that 

occur at a rate τ-1, where τ is the relaxation time.  If the collision rate is fast enough that 

sample-dependent boundary or shape effects do not matter, then the distribution of particles 

velocity vectors in space must be purely random.  Furthermore, if we neglect the fact that some 

collisions are elastic (i.e., conserve kinetic energy) and others are inelastic, we can adopt an 

“average kinetic velocity”, v0, for every particle in the solid.  This velocity (magnitude) is 

assumed to be constant until an external force is applied. 

These points can be expressed by writing the velocity of any given particle as 

  0 0ˆ ˆ ˆ( sin cos sin sin ˆcos )v v r v x y zθ φ θ φ θ= = + +r   (1) 

where r̂  is the radial unit vector in spherical coordinates.  Geometrically, the velocity vectors 

of all particles in a population would terminate on a sphere of radius v0, all directions of the 

velocity vector being equally probable. 
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Energy Flux and Charge Flux: One Dimensional Analysis 

Besides the charge flux, or electrical current, the second important particle flux in 

kinetic theory (and transport theories, in general) is the energy flux U
2 ]J n [( 1 / 2 )mv υ= ⋅

r r
.  

Since all energy is assumed to be kinetic, and kinetic energy comprises heat, this is also the 

heat flux and is often designated as KJ
r

 .  For the simple geometry shown in Fig. 1(a) of 

transport of charged particles in a uniform electric field and homogeneous temperature T, there 

is a simple relationship between the heat flux and the charge flux.  The electric field is assumed 

uniform along the z axis so that 

q,z z zn J q v n q Eµ= ⋅ ⋅ = ⋅ ⋅  

But because the particles carry both charge and heat, the kinetic velocities are the same, so that 

U,z K,z z z
2 2] ]n [( 1 / 2 )mv n [( 1 / 2 )mvJ J v Eµ= ⋅ ⋅≡ ⋅ = ⋅  

Thus the ratio of heat flux to electrical flux is given by 

2 *(1/ 2)K K

q

J mv U
J q q

≡ Π = ≡    (2)  

where U*K is the kinetic energy per particle, and Π is the Peltier coefficient – an important 

quantity in solids whenever electrical and thermal transport are occurring simultaneously. 

 

Motion in a Temperature Gradient: One-Dimensional Analysis 

Given these clarifications, we can also proceed to analyze the electrical and thermal 

effects together for the special geometry of a parallelapiped in which heat and charge are 

restricted to flowing in one end, and out the other.  We assume that the long axis of the 

parallelapiped is the z axis, as shown in the cross-sectional views of Fig. 1(b) and (c).   The 
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temperature at one end is assumed to be T2 and the opposite end T1, where T2 > T1.  We 

examine the relevant physical quantities in any plane perpendicular to the z axis.  The analysis 

is carried out in two extreme cases: (1) with a metal wire (“short circuit”) connecting both ends 

so that there is no difference in electrostatic potential between them, and (2) no metal wire 

(“open circuit”) connecting the two ends so that an electrostatic potential difference can build 

up in response to the temperature difference. 

    Short-Circuit Conditions 

In the short-circuit case represented by Fig. 1(b), the heat flux along the z axis is given 

by the (scalar) expression 

*
,K z z z KJ n Uυ≡ ⋅ ⋅      (5) 

where nz and vz are the z components of the density and velocity, respectively.  We assume that 

the temperature difference T2 – T1 = ∆T is small compared to T1 and T2 so that n remains 

L
qJ

R
QJ

T1 T2

z

Metal Wire
(“short circuit”)

T1 T2

z

No Interconnect
(“open circuit”)

(b)

(c)

vLvR

z0

V1 V2
Metal Wire

(“short circuit”)

(a)

L
qJ

R
QJ

T1 T2

z

Metal Wire
(“short circuit”)

T1 T2

z

No Interconnect
(“open circuit”)

(b)

(c)

vLvR

z0

V1 V2
Metal Wire

(“short circuit”)

(a)

 
 

Fig. 1. 
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approximately constant throughout the sample, and the kinetic behavior remains isotropic 

about any point.   Intuitively we then expect that the left-going heat flux in Fig. 1(a) L
QJ  is 

greater than the right going flux R
QJ  because L

QJ  is associated with particles coming from a 

hotter region (T2 > T1) and, therefore, having higher kinetic energy.  This guides us to calculate 

the difference ∆JK,z , also called the net heat flux, by a judicious application of the chain rule of 

differential calculus: 

*

, , , *
QL R K

Q z Q z Q z
K

dJ dU dTJ J J z
dU dT dz

∆ ≡ − ≈ − ∆    (6) 

where the minus sign is added to account for the fact that kinetic energy flows from high-T 

regions to low-T regions.  From (5), we calculate  

,
*

Q z
z

K

dJ
nv

dU
=  

Furthermore, all kinetic energy contributes to heat, but *
KU is only one-third of the total since 

the fundamental kinetic assumption of (1) is an isotropically directed velocity.  In other words 

*
'1K
V

dU C
dT n

=  

where C’v is the specific heat capacity.  Thus (6) becomes 

'
,K z Z V

dTJ v C z
dz

∆ ≈ − ∆    (7) 

 The next and most subtle step is to estimate ∆z, the seemingly arbitrary spatial 

differential.  Presumably, ∆z should be much less than the length of the parallelapiped, but 

larger than the atomic dimension so that it makes sense to be using macroscopic 
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thermodynamic quantities like temperature and heat capacity.  In most cases a reasonable 

distance is the “mean-free-path”,  

∆z = vz τ (8) 

Substitution of this into (7) yields, 

'
,K z Z V z

dT dTJ v C v
dz dz

τ κ∆ ≈ − ≡ −    (9) 

where the last step defines the thermal conductivity: 

2 '
z Vv CτΚ =  (10) 

This is a very useful expression for the thermal conductivity of many different types of 

independent particles, quasiparticles, or quantized collective excitations.  Good examples are 

electrons, phonons, and magnons. 

 The last step is to spatially average over the isotropic kinetic distribution represented by 

(1).  The average is taken over just the hemisphere for which the z axis is the polar axis and all 

directions being equally weighted: 

2 / 2 / 2
2 2 2 / 22 30

02 20 0 0 0
02 / 2 / 2 / 2

0

0 0 0

ˆ( ) sin cos sin (cos / 3) 1
3cossin sin

z

v z d d v d v
v v

d d d

π π π

π

π π π π

θ θ φ θ θ θ θ

θθ θ φ θ θ

⋅ −
< >= = = =

−

∫ ∫ ∫

∫ ∫ ∫

r

  (11)  

So (10) become 2 '
0(1/3) Vv CτΚ =      (12) 

     

Open-Circuit Conditions 

We now consider the open-circuit case of Fig. 1(c) whereby a temperature gradient 

leads to the motion of charged particles and the creation of an internal electric field.  

Historically, this is called a thermoelectric effect.  Electric current flows along with the thermal 
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current until enough charge builds up at the ends of the sample to stop the flow.  This condition 

is defined in general by an internal electric field  

E T≡ Σ ⋅∇
r r

 

where Σ is called the thermopower, or Seebeck coefficient.1  Naturally the direction of the 

electric field in the bar geometry of Fig. 1(b) is along the z axis, Ez = Σ(dT/dz ). 

To calculate Σ we can inspect in any plane perpendicular to the z axis.  First we write 

the net velocity difference at a point z0 

z
L R z

d dT z
dT dz
υυ υ υ− = ∆ = − ∆  

where again, the length scale is the “mean-free-path” ∆z = vz τ , and the negative sign is added 

to account for the fact that kinetic energy transfers from high-T to low-T regions.  Therefore,  

2

2
z z

z z
d dvdT dT
dT dz dT dz
υ τυ υ τ∆ = − = −  

and     

21
2 z

z

d m
dTv

m dT dz

υ
τ

⎛ ⎞
⎜ ⎟− ⎝ ⎠∆ =  

Now we spatially average (designated by an overbar) with respect to the isotropic kinetic 

distribution of (1),  

2 2 2
0

1 1 1
2 2 2

3

z z

z

d m d m d m
dT dT dTv

m dT dz m dT dz m dT dz

υ υ υ
τ τ τ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠∆ = = =  

But since 2 *
0(1/ 2) Km Uυ = , we can write 

                                                 
1  after Thomas Seebeck, an early-19th century German physicist 
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'*

3 3
VK

z
CdU dT dTv

m dT dz m n dz
ττ −−

∆ = =
⋅     (13)

 

In steady state and for the open-circuit conditions, the thermal zv∆  will spatially 

separate the particles, creating an internal electric field when they have charge. This internal 

field will induce the “drift” velocity effect derived earlier for purely electrical transport, 

e
z z z

qE E
m
τυ µ≡ =  .     (14) 

A steady state will be reached when the thermally-induced velocity difference from (13) is 

equal and opposite to the drift velocity (12).  That is  

'

3
V

z z
Cq dTE v

m m n dz
ττ +

= −∆ =
⋅

 

or,      
'

3
v

z
C dTE
n q dz

=
⋅

 

' '

/ 3 3
V VC CE

dT dz qn en
+ −

⇒ Σ ≡ = =  (for electrons)   (15) 

 

Specification of kinetic theory results with Maxwell Boltzmann distribution: Transport Laws 

      With relatively little work, kinetic theory predicts several important quantities, σ,  Π,  

Κ,and Σ .2  All off them represent linear response to non-equilibrium conditions. (gradient in 

temperature, electrostatic potential, or both).   But to relate the thermally-related quantities to 

experiment, we need to know the values of the kinetic velocity v0 or the related kinetic energy 

per particle *
KU .   The simplest and most popular approach is to use the Maxwell-Boltzmann 

                                                 
2  This is the big advantage of kinetic theory over all other transport formalisms – capturing multiple physical 
effects with the greatest possible simplicity. 
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distribution of velocities derived much earlier in the coverage of statistical mechanics.  A key 

result of the Maxwell-Boltzmann distribution was the equipartition theorem, for which the 

mean energy of the particle is 
1
2 Bk T  per “degree-of-freedom.”   In kinetic theory, there are 

three degrees of freedom, vx , vy , and vz, in total, each with equal value (v0) and weighting.   

Thus,  

  2 * 2 2 2
0(1/ 2) (1/ 2) ( ) (3 / 2)K x y z Bmv U m v v v k T< >≡< >=< + + >=   

    
*

' (3 / 2)K
V B

nd UC nk
dT
< >

≡ =     (16) 

where the < > brackets denote statistical averaging.   

For the Peltier coefficient of (2), (16) leads to  

(3/ 2) 3 / 2B
B

k T k T e
q

Π = = −     (17)  

where the last step applies to electrons.  For the thermal conductivity of (12), (16) yields 

  
23 33

3 2 2
B B

B
k T nk Tnk
m m

ττΚ = ⋅ =
             (18)

 

For the Seebeck coefficient (15), (16) yields  

'

3 2 2
V B BC nk k

qn qn e
−

Σ = = =      (19) 

where the last step applies to electrons. 

It is interesting and historic to take the ratio of Κ to σ using (16): 

2 2' 2
0

2

(1/ 3) 3 3
2 2

V B BC k kK T T
nq m q e

υ τ
σ τ

⎛ ⎞ ⎛ ⎞= = ⋅ = ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

       (20)
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where the last step pertains to the particles being electrons.  This linear dependence of Κ/σ on 

T was discovered in metals during the mid-19th century and called the Wiedemann Franz Law.  

 The ratio of the Peltier to Seebeck coefficients, (15)/(18), is simply given 

(3/ 2) / 3
(1/ 2) /

B

B

k T q T
k q

Π
= =

Σ  ,    (21) 

a result known as Kelvin’s law, and a cornerstone of the rather esoteric field of irreversible 

thermodynamics.  

 

Comparison of Kinetic Theory and Transport Laws with Experiment 

 

The linear relation of K/σ to T of the Wiedemann-Franz law forms an important 

comparison with experiment.   The proportionality constant, K/σT, is called the Lorenz 

number, and according to (20) has the value 

L =  (3/2) (kB/e)2 = 1.11x10-8 [MKSA]   (22) 

A few experimental values for common metals are listed in Table 1 below.  Note that 

the experimental values are just over two-times larger than the kinetic-theory prediction of 

(14).  Not bad agreement for (14) considering the low level of effort expended at deriving it !  

Most metals have Lorenz numbers in the range shown and display the linear dependence Κ/σ = 

L⋅T over a wide temperature range.  But semiconductors do not generally display this behavior.  

Table 1 at 273 K
Material L ( x108)

Cu 2.23
Au 2.35
Pb 2.47
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The reason, as might be expected, is that the thermal current and electrical current are not 

carried by the same particle type in semiconductors.  The electrical current is carried by free 

carriers, as in metals, but the thermal current is carried primarily by phonons. 

To understand the discrepancy between (22) and Table 1, we recall that in metals, 

semimetals, or “degenerate” semiconductors, the Pauli exclusion principle allows only those 

electrons near or above the Fermi energy to change their kinetic energy significantly in 

response to a significant change of temperature.   This was quantified in the coverage of the 

heat capacity for the Fermi model of free electrons:   

2

2V B
F

TC nk
T

π
≅ ,   

which is generally much smaller than the kinetic theory result (3/2)nkB.  To illustrate this point, 

we recall that the typical Fermi temperature in good metals is K105T 4
F ×= , for which Cυ 

∼ 30.01( )
2 Bnk  at K300T ≅ .  In addition, 21 3

2 2 Bm k Tυ ≠  in the Fermi model, but instead, 

21
2 Fm kTυ ≡ .  Adding these corrections to (13), we get 

2
' 2

2 22 2

2 2 2 2

2
3 23

3 3

B F
BV

F B B

k Tm Tm nkC T m k kK T T
nq nq q e

π
υ π π

σ
= = = ⋅ = ⋅    (23)  

where the last step pertains to the particles being electrons.   

The difference between (23) and the kinetic theory prediction is stated by 

( )
( )

2/ 3 2.19
/ 3 2

corrected

kinetic

σ π
σ

Κ
= =

Κ
 

   So the corrected Lorenz number becomes 
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22
82.45 10

3
BkKL

T q
π

σ
−⎛ ⎞

≡ = = ×⎜ ⎟
⎝ ⎠

 2K
W Ω−  

This is now in good agreement with the experimental values in Table I.  And indeed, this 

agreement was one of the early triumphs of the Fermi model of the free electrons in metals. 

For the Seebeck coefficient of (19), we get the evaluation  

'
54.3 10 /

3 2
V BC k x V K

qn q
−Σ = = = −     (24) 

where the last step pertains to electrons.  This is to be compared to the experimental values 

listed in Table II.  Clearly, the magnitude deviates from experiment for all materials except the 

semimetals, antimony and bismuth.   

Material Seebeck Coefficient 
[x10-6 V/K](@273 K) 

Gold 6.5 
Iron 19 
Aluminum 3.5 
Silicon 440 
Antimony 47 
Bismuth -72 

To explain the discrepancy with gold and the other common metals, we resort to the Fermi 

model once again, noting that 

2
' 3

2 2V B B
F

TC nk nk
T

π
= <<  

So,    
2 2( / 2) /

3 6
B F B

F

nk T T k T
ne e T

π π− −
Σ = =    (25) 

For example, gold has K104.6T 4
F ×≅ @ T=273K, so that  

60.6 10 V K−⇒ Σ ≈ − ×  

still in poor agreement with the experimental value of Q = 6.5x10-6 . 
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 In addition, semiconductors display poor agreement between the experimental and 

theoretical Seebeck coefficient, even though no correction is needed by the Fermi model.  In 

intrinsic silicon, for example, the experimental thermopower is 4~ 4.4 10Q V K−× .  This is 

over ten-times higher than kinetic prediction of (24).  The reason for this is the same as for the 

inaccuracy in predicting the Lorenz number: the electrical and thermal currents in 

semiconductors are carried primarily by two different particle types: electrons (or holes) for 

electrical and phonons for thermal.  From (16), the heat capacity of phonons remains high even 

when the density n of free carriers becomes low.   

 In conclusions, the Seebeck coefficient and other thermoelectric metrics are amongst 

the most difficult quantities to predict theoretically in all of transport theory.  As we shall see 

later, they are strongly sensitive to the band structure and, therefore, are best addressed with a 

more sophisticated treatment we will develop later called semiclassical transport. 

 

  

 


