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Kinetic Transport Theory#3 

 

Motion in a Concentration Gradient 

          The last driving “force” we consider with kinetic theory is a concentration gradient of 

charge carriers as represented in the open-circuited one-dimensional transported in the 

parallelapiped of Fig. 1.  We assume n2 > n1 and expect that  L R
n nJ J> in this case since the 

perfectly randomizing nature of the collisions will cause more particles scatter from right-to-

left than from left-to-right.    Around the region bisected by z0, we can define the difference 

between left and right-going carriers as, 
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where ∆ Jn is the net particle flux, also called the diffusion current.  From the kinetic definition, 

JZ ≡ nvz , so that       
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And we again apply a length scale equal to the mean-free-path, x xυ τ∆ =  , so that  
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  If we take a spatial average (denoted by overbar) for the isotropic kinetic distribution, 
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Fig. 1. 
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where the last step is motivated by the linear (response) relationship between ∆J and dz, which 

leads us to call the proportionality constant the diffusivity, 

D→ diffusivity 2
0

1

3
D υ τ=  

Applying the Maxwell-Boltzman distribution and equipartition principle once again, 
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This is called the Einstein relation, and has a very special place in solid state materials, 

particularly semiconductor devices.1  It is worth examining further by way of example.  Let’s 

take n-type silicon having a free electron concentration of n = 1x1016 cm-3 @ 300 K.  

Inspection of semiconductor tables shows that for this carrier concentration the conductivity of 

Si is σ ≈ 2.0/Ω-cm, which implies that µ ≈ 1250 cm2/V-s and D ≈ 32 cm2/s.   

Potential Energy in Kinetic Theory 

As in thermoelectric effect under open-circuit conditions, the gradient in n is usually 

associated with a built in electric field if the particles are charged.   This motivates us to 

balance the diffusion current of (1) against a drift current, leading to 

( )J n E D dn dxd µ= ≡ − −   (3) 

                                                 
1 Interestingly, Einstein’s entry into science was largely through statistical mechanics and kinetic theory.  And like 
his later endeavors in relativity, quantum theory, and unified field theory, he had a great knack for deriving 
incredibly elegant expressions based on the firm belief that physical laws should always be simple. 
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But from electrostatics, we also have  
dE
dx
φ

=−  where φ is the electrostatic potential.   

Combining this with Einstein’s relation, (3) becomes   

Bk Td dn
n E n

dx dxe
µφ

µ µ= − =      (4) 

or,     
1Bk Td dn

dx n dxe
φ

− =  

This is a linear first-order differential equation in a single independent variable, so can be 

integrated immediately to get      

ln
k TB n C
e

φ
−

= − +  

By taking the exponential of both sides, we get 

( )exp exp( )n e k T eC k TB Bφ= − −  

Because C is a constant of the integration, this can be re-written as    

( )0 exp e kTn n φ−=
 

 At first this might appear to be a trivial result since the kinetic theory provided the 

answer so easily.  But it is a profound relationship for device physics since it suggests that the 

when diffusion and drift are occurring simultaneously in the open-circuit condition, the 

electrostatic potential has an exponential effect on the carrier concentration. 

 

Multiple Scattering Events 

     Suppose that there are multiple scattering processes that are physically and statistically 

independent. We can write Newton’s equation per particle as, 
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This is still a linear 1st order linear inhomogeneous differential equation with constant 

coefficients.  So given an initial condition, say υ(t = 0) = υ0, it can be solved uniquely.  

Generally the greatest number of scattering processes that one addresses is two. In this case,     
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    Newton’s equation becomes 
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τµ = .  Furthermore, we can write the 

electrical current as Jq = σ’E, where 
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The decomposition of total resistivity into independent components of (5) is called 

Matthiessen’s Rule.  In general, we can infer    
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Refinements from Classical Scattering Theory 

As we have derived it, kinetic theory is very useful at describing transport phenomena in 
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solids, but makes the following questionable assumptions: 

(1) All particles in the population have the same scattering time τ that is independent of 

velocity and energy. 

(2) Each particle in the population is statistically independent of the others in terms of velocity 

(energy) and position. 

     In reality, τ is dependent upon velocity (and energy) and the particles are statistically 

distributed and correlated through their quantum identity and the associated Fermi statistics, 

Bose statistics or photon statistics.   In this case, the Newton’s equations for two separate 

particles are not so simple, even if the particles are distinguishable.  Intuitively, we should 

write the equations as     
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where v1 (v2) denotes the velocity of particle 1 as function of v2, and v2 (v1) denotes the velocity 

of particle 2 as function of v1. 

      To estimate the velocity dependence of τ we start with collision theory (classical or 

quantum mechanical) for particles scattering in a force field (potential energy introduced).  An 

important quantity is the collision or scattering rate, fS 

1
( )SSf nσ υ υ

τ
= ⋅ ≡  

where NS  is the density of scattering centers, σS(v) is the their scattering cross section, and v is 

the velocity of the particles.   For example, consider ionized impurity scattering (which is 

common in doped semiconductors, even at room temperature).  Early work in particle physics 

by Rutherford and others showed that high-energy particles experience much less scattering 
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from charged centers than low energy ones. They found,         
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where A is a constant dependent on the force field and the particle in question. 

So,   
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This is a very strong velocity dependence. If we assume for the moment that the scattered 

particles are Maxwell-Boltzmann distributed so the equipartition law applies, then, 

3 3 2( )3 /Bk T mυ = , and  
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This characteristics “T3/2” law shows up surprisingly often in the mobility of semiconductors 

and certain dielectric materials.  And it is usually a sign of ionized impurity or defect 

scattering.  


