ECE215B, Quiz\#1 Solutions

1. (Electrostatics Problem):

(1) $E_{\text {in }}=E_{o}-N\left(P / \varepsilon_{0}\right)=E_{o}-P / \varepsilon_{0}$ ($\mathrm{N}=1$ for film or slab). But $P \equiv \chi_{e} \varepsilon_{o} E_{\text {in }}$ so $E_{\text {in }}=E_{o}-\chi_{e} E_{\text {in }} \Rightarrow E_{\text {in }}\left(1+\chi_{e}\right)=E_{o}$ or $E_{\text {in }}=E_{o} /\left(1+\chi_{e}\right) \equiv E_{o} / \varepsilon_{r}, \varepsilon_{r} \equiv 1+\chi_{e}$
(2) with metal plates, $\mathrm{E}_{\mathrm{in}}=\mathrm{V}_{\mathrm{B}} / \mathrm{d}$, so the bias voltage required to get the same E_{in} as in (a) is simply $\mathrm{V}_{\mathrm{B}}=$ $\mathrm{E}_{0} \cdot \mathrm{~d} / \varepsilon_{\mathrm{r}}$

2.(Ferroelectric Problem):

(a) $\mathbf{E}_{\text {loc }}=\mathbf{E}_{\text {in }}+\mathbf{P}_{\mathrm{e}} / 3 \varepsilon_{0}=\mathbf{E}_{\text {in }}\left(1+\chi_{\mathrm{e}} / 3\right)$
(b) $\mathbf{p}=\alpha \mathbf{E}_{\text {loc }}=\alpha \mathbf{E}_{\text {in }}\left(1+\chi_{\mathrm{e}} / 3\right) ; \mathbf{P}_{\mathbf{e}}=n \mathbf{p}=n \alpha\left(\mathbf{E}_{\text {in }}+\mathbf{P}_{\mathrm{e}} / 3 \varepsilon_{0}\right)$, so that $\mathbf{P}_{\mathbf{e}}=n \alpha \mathbf{E}_{\text {in }} /\left(1-\mathrm{n} \alpha / 3 \varepsilon_{0}\right)$
(c) The spontaneous polarization occurs when the denominator goes to zero, or $n \alpha / 3 \varepsilon_{0}=1$. For a bodycentered cubic lattice, the volume occupied by each primitive cell is just $\mathrm{a}^{3} / 2$, so for $\mathrm{a}=5 \mathrm{Ang}, \mathrm{n}=$ $1.6 \times 10^{28} \mathrm{~m}^{-3}$, and $\alpha=1.66 \times 10^{-39} \mathrm{Cb}-\mathrm{m}^{2} / \mathrm{V}$

3. (Magnetic Problem):

(a) the maximum quantum number is $\gamma=\beta+\mathrm{s}=2+1 / 2=5 / 2$. The corresponding eigenvalue of J is $\sqrt{\gamma(\gamma+1)} \cdot \hbar=\sqrt{35 / 4} \cdot \hbar$. There are $2 \gamma+1=6$ possible eigenstates of J for this γ, denoted uniquely by their corresponding z components of $\mathbf{J}, \mathrm{m}_{\mathrm{J}}=+5 / 2,+3 / 2,+1 / 2,-1 / 2,-3 / 2$ and $-5 / 2$.
(b) For any magnetic dipole $\vec{m}=-g \mu_{B} \vec{J} / \hbar$, and the corresponding potential energy is
$U=-\vec{m} \cdot \vec{B}$. For our given atom, $-\vec{m} \cdot \vec{B}=g \mu_{B} \vec{J} \cdot \vec{B} / \hbar=g \mu_{B} m_{J} \cdot B$ where $m_{J}=+5 / 2,+3 / 2$, $+1 / 2,-1 / 2,-3 / 2$, and $-5 / 2$. So we have six energy levels $U_{1}=(-5 / 2) g \mu_{B} B, U_{2}=(-3 / 2) g \mu_{\mathrm{B}} B$, $U_{3}=(-1 / 2) g \mu_{\mathrm{B}} B, U_{4}=(1 / 2) g \mu_{\mathrm{B}} B, U_{5}=(3 / 2) g \mu_{\mathrm{B}} B$, and $U_{6}=(5 / 2) g \mu_{\mathrm{B}} B$. We expect χ_{m} to be positive \rightarrow paramagnetic, or perhaps ferromagnetic under special conditions

4.(Kinetic theory)

a) $\Delta \mathrm{z}=\mathrm{v}_{\mathrm{z}} \tau$, where τ is the collision time, so $\kappa=\left(\mathrm{C}^{\prime} \mathrm{v}\right)\left(\mathrm{v}_{\mathrm{z}}\right)^{2} \cdot \tau$. But if all the carriers have the same magnitude of velocity v_{0} and are randomly directed in space, then the statistical average is equivalent to a spatial average, and $\langle\kappa\rangle=\left(\mathrm{C}^{\prime}{ }_{\mathrm{v}}\right) \tau\left\langle\left(\mathrm{v}_{\mathrm{z}}\right)^{2}\right\rangle=\left(\mathrm{C}^{\prime} \mathrm{v}\right) \tau(1 / 3)\left(\mathrm{v}_{0}\right)^{2}$
b) From kinetic theory, $\sigma=n e^{2} \tau / \mathrm{m}$, where m is the mass of the electron, or $\tau=\mathrm{m} \sigma / \mathrm{ne}^{2}=2.8 \times 10^{-}$ ${ }^{14} \mathrm{~s}=28 \mathrm{fs}$. By definition, $\mathrm{T}_{\mathrm{F}} \equiv \mathrm{U}_{\mathrm{F}} / \mathrm{k}_{\mathrm{B}}=6.4 \times 10^{4} \mathrm{~K}$. Thus at $300 \mathrm{~K}, \mathrm{C}_{\mathrm{V}}{ }^{\prime}=1.88 \times 10^{4} \mathrm{~J}-\mathrm{K}^{-1}-\mathrm{m}^{-3}$, and $\kappa=\left(\mathrm{C}^{\prime}{ }_{\mathrm{V}}\right) \tau(1 / 3)\left(\mathrm{V}_{0}\right)^{2} \approx\left(\mathrm{C}^{\prime}{ }_{\mathrm{V}}\right) \tau(1 / 3)\left(\mathrm{v}_{\mathrm{F}}\right)^{2}=3.4 \times 10^{2} \mathrm{~W} / \mathrm{m}-\mathrm{K}=3.4 \mathrm{~W} / \mathrm{cm}-\mathrm{K}$.

