1. (Electrostatics Problem):

(1) \[E_{in} = E_o - N \left(P / \varepsilon_0 \right) = E_o - P / \varepsilon_0 \] (N = 1 for film or slab). But \(P \equiv \chi_e \varepsilon_o E_{in} \) so

\[E_{in} = E_o - \chi_e E_{in} \Rightarrow E_{in} (1 + \chi_e) = E_o \] or \(E_{in} = E_o / (1 + \chi_e) \equiv E_o / \varepsilon_r \), \(\varepsilon_r \equiv 1 + \chi_e \)

(2) with metal plates, \(E_{in} = \sqrt[3]{V_B/d} \), so the bias voltage required to get the same \(E_{in} \) as in (a) is simply \(V_B = E_o \cdot d / \varepsilon_r \)

2. (Ferroelectric Problem):

(a) \[E_{loc} = E_{in} + P_e / 3 \varepsilon_0 = E_{in} (1 + \chi_e / 3) \]

(b) \[p = \alpha E_{loc} = \alpha E_{in} (1 + \chi_e / 3) ; P_e = n \alpha (E_{in} + P_e / 3 \varepsilon_0) \]

(c) The spontaneous polarization occurs when the denominator goes to zero, or \(n \alpha / 3 \varepsilon_0 = 1 \). For a body-centered cubic lattice, the volume occupied by each primitive cell is just \(a^3 / 2 \), so for \(a = 5 \) Ang, \(n = 1.6 \times 10^{28} \) m\(^{-3} \), and \(\alpha = 1.66 \times 10^{-39} \) Cb-m\(^2\)/V.

3. (Magnetic Problem):

(a) the maximum quantum number is \(\gamma = \beta + s = 2 + \frac{1}{2} = 5/2 \). The corresponding eigenvalue of \(J \) is \(\sqrt{\gamma(\gamma + 1)} \cdot \hbar = \sqrt{35 / 4} \cdot \hbar \). There are \(2 \gamma + 1 = 6 \) possible eigenstates of \(J \) for this \(\gamma \), denoted uniquely by their corresponding \(z \) components of \(J \), \(m_J = +5/2, +3/2, +1/2, -1/2, -3/2, -5/2 \).

(b) For any magnetic dipole \(\vec{m} = - g \mu_B \vec{J} / \hbar \), and the corresponding potential energy is

\[U = - m \cdot \vec{B} \] For our given atom, \(- m \cdot \vec{B} = g \mu_B \vec{J} \cdot \vec{B} / \hbar = g \mu_B m_J \cdot \vec{B} \) where \(m_J = +5/2, +3/2, +1/2, -1/2, -3/2, -5/2 \). So we have six energy levels \(U_1 = (-5/2)g \mu_B B \), \(U_2 = (-3/2)g \mu_B B \), \(U_3 = (-1/2)g \mu_B B \), \(U_4 = (1/2)g \mu_B B \), \(U_5 = (3/2)g \mu_B B \), and \(U_6 = (5/2)g \mu_B B \). We expect \(\chi_m \) to be positive \(\rightarrow \) paramagnetic, or perhaps ferromagnetic under special conditions

4. (Kinetic theory)

a) \(\Delta z = v_z \tau \), where \(\tau \) is the collision time, so \(\kappa = (C' v) (v_z)^2 \cdot \tau \). But if all the carriers have the same magnitude of velocity \(v_0 \) and are randomly directed in space, then the statistical average is equivalent to a spatial average, and \(\kappa = (C' v) (v_z)^2 \cdot \tau = (C' v) (1/3) (v_0)^2 \)

b) From kinetic theory, \(\sigma = ne^2 / \tau m \), where \(m \) is the mass of the electron, or \(\tau = m \sigma / ne^2 = 2.8 \times 10^{-14} \) s = 28 fs. By definition, \(T_F \equiv v_F / k_B = 6.4 \times 10^4 \) K. Thus at 300 K, \(C' v = 1.88 \times 10^4 \) J-K\(^{-1}\)-m\(^{-3} \), and \(\kappa = (C' v) (1/3) (v_0)^2 \approx (C' v) (1/3) (v_F)^2 = 3.4 \times 10^2 \) W/m-K = 3.4 W/cm-K.