ECE215B, Quiz#1 Solutions

1. (Electrostatics Problem):

(1) $E_{in} = E_o - N(P/\varepsilon_0) = E_o - P/\varepsilon_0$ (N = 1 for film or slab). But $P \equiv \chi_e \varepsilon_o E_{in}$ so $E_{in} = E_o - \chi_e E_{in} \Longrightarrow E_{in}(1 + \chi_e) = E_o$ or $E_{in} = E_o/(1 + \chi_e) \equiv E_o/\varepsilon_r$, $\varepsilon_r \equiv 1 + \chi_e$

(2) with metal plates, $E_{in} = V_B/d$, so the bias voltage required to get the same E_{in} as in (a) is simply $V_B = E_o \cdot d / \epsilon_r$

2.(Ferroelectric Problem):

- (a) $E_{loc} = E_{in} + P_e/3\varepsilon_0 = E_{in} (1 + \chi_e/3)$
- (b) $\mathbf{p} = \alpha \mathbf{E}_{loc} = \alpha \mathbf{E}_{in} (1 + \chi_e/3)$; $\mathbf{P}_e = n\mathbf{p} = n\alpha(\mathbf{E}_{in} + \mathbf{P}_e/3\varepsilon_0)$, so that $\mathbf{P}_e = n\alpha \mathbf{E}_{in}/(1 n\alpha/3\varepsilon_0)$
- (c) The spontaneous polarization occurs when the denominator goes to zero, or $n\alpha/3\epsilon_0 = 1$. For a bodycentered cubic lattice, the volume occupied by each primitive cell is just $a^3/2$, so for a = 5 Ang, $n = 1.6\times10^{28}$ m⁻³, and $\alpha = 1.66\times10^{-39}$ Cb-m²/V

3. (Magnetic Problem):

(a) the maximum quantum number is γ = β + s = 2 + ½ = 5/2. The corresponding eigenvalue of J is √γ(γ+1) · ħ = √35/4 · ħ. There are 2γ + 1 = 6 possible eigenstates of J for this γ, denoted uniquely by their corresponding z components of J, m_J = +5/2, +3/2, +1/2, -1/2, -3/2 and -5/2.
(b) For any magnetic dipole m = -g μ_BJ / ħ , and the corresponding potential energy is U = -m · B . For our given atom, -m · B = g μ_BJ · B / ħ = g μ_Bm_J · B where m_J = +5/2, +3/2, +1/2, -1/2, -3/2, and -5/2. So we have six energy levels U₁ = (-5/2)gμ_BB, U₂ = (-3/2)gμ_BB , U₃ = (-1/2)gμ_BB , U₄ = (1/2)gμ_BB , U₅ = (3/2)gμ_BB , and U₆ = (5/2)gμ_BB. We expect χ_m to

be positive \rightarrow paramagnetic, or perhaps ferromagnetic under special conditions

4.(Kinetic theory)

- a) $\Delta z = v_z \tau$, where τ is the collision time, so $\kappa = (C'_v)(v_z)^2 \cdot \tau$. But if all the carriers have the same magnitude of velocity v_0 and are randomly directed in space, then the statistical average is equivalent to a spatial average, and $\langle \kappa \rangle = (C'_v)\tau \langle (v_z)^2 \rangle = (C'_v)\tau (1/3)(v_0)^2$
- b) From kinetic theory, $\sigma = ne^{2}\tau/m$, where m is the mass of the electron, or $\tau = m\sigma/ne^{2} = 2.8 \times 10^{-14}$ s = 28 fs. By definition, $T_{F} \equiv U_{F}/k_{B} = 6.4 \times 10^{4}$ K. Thus at 300 K, $C_{V}' = 1.88 \times 10^{4}$ J-K⁻¹-m⁻³, and $\kappa = (C'_{V})\tau (1/3)(v_{0})^{2} \approx (C'_{V})\tau (1/3)(v_{F})^{2} = 3.4 \times 10^{2}$ W/m-K = 3.4 W/cm-K.