1: For semiclassical Boltzmann eqn, f is a distribution function of the wave-packet position \vec{r} , wave vector \vec{k} , and time, t, i.e., $f = f(\vec{r}, \vec{v}, t)$ so that $\frac{df}{dt} = -\frac{\partial f}{\partial \vec{r}} \frac{d\vec{r}}{dt} - \frac{\partial f}{\partial \vec{k}} \frac{dk}{dt}$.(1) (b) At any point in time, $\iint f(\vec{r}, \vec{k}, t) d\vec{r} d\vec{k} = N$, the number of particles in the solid. To return to equilibrium, we add a scattering term to (1): $(df/dt)|_{scatt} = -[f(\vec{r}, \vec{k}) - f_0]/\tau(\vec{k})$ where f_0 is the equilibrium distribution function and $\tau(k)$ is the relaxation time c) If $\partial f / \partial \vec{r} = 0$ then in the steady state, we get $0 = -\frac{\partial f}{\partial \vec{k}} \frac{d\vec{k}}{dt} - \frac{f - f_0}{\tau}$ or $f = f_0 - \tau \frac{\partial f}{\partial \vec{k}} \frac{d\vec{k}}{dt}$. For a uniform E field along x axis and carriers in a spherical (constant-energy) valley in k space, $(\partial f / \partial \vec{k})(\partial \vec{k} / \partial t) = (\partial f / \partial k_x)(\partial k_x / \partial t) = (\partial f / \partial U)(\partial U / \partial k_x)(\partial k_x / \partial t) =$ $(\partial f / \partial U)(\hbar^2 k_x / m^*)(qE_0 / \hbar)$ so that $f \approx f_0 - (q\hbar k_x E_0 \tau / m^*)(\partial f / \partial U)$. #2. (a) For any energy band $\vec{v}_{e} = (\hbar)^{-1} \vec{\nabla} U(\vec{k}) \equiv v_{er} \hat{x} + v_{er} \hat{y} + v_{er} \hat{z}$ and $d\vec{r} / dt = \vec{v}_{e}$, where \vec{r} defines the location of the wave-packet center. For the specific energy band $U = (\hbar^2/2)(\alpha k_x^2 + \alpha k_y^2 + \alpha k_z^2 + 2\beta k_x k_y + 2\beta k_x k_z + 2\beta k_y k_z), \text{ we get}$ $\vec{\mathbf{v}}_{ex} = \hbar \left(\alpha k_x + \beta (k_y + k_z) \right); \quad \vec{\mathbf{v}}_{ey} = \hbar \left(\alpha k_y + \beta (k_x + k_z) \right); \quad \vec{\mathbf{v}}_{ez} = \hbar \left(\alpha k_z + \beta (k_x + k_y) \right), \text{ and thus}$ $dx/dt = \hbar \left(\alpha k_x + \beta (k_y + k_z) \right); \quad dy/dt = \hbar \left(\alpha k_y + \beta (k_x + k_z) \right); \quad dz/dt = \hbar \left(\alpha k_z + \beta (k_x + k_y) \right),$ (b) The vector semiclassical equation of motion is $\hbar d\vec{k} / dt = q \left(\vec{E} + \hbar^{-1} \vec{\nabla}_k U \times \vec{B} \right) - \hbar \vec{k} / \tau$. For $\vec{E} = E_0 \hat{x}$ and $\vec{B} = B_0 \hat{z}$, the component equations become $x: \hbar dk_x/dt = q \left[E_0 + B_0 [\alpha k_y + \beta (k_x + k_z)] \right] - \hbar k_y/\tau$ $y: \hbar dk_y/dt = B_0[\alpha k_x + \beta(k_y + k_z)] - \hbar k_y/\tau$ and $z: \hbar dk_z/dt = -\hbar k_z/\tau$. In the steady state, $dk_x/dt = 0$, so if $B_0 = 0$, the x component has obvious solution $k_x = qE_0\tau/\hbar$ (c) From (a), the motion of the wavepacket along x is $dx/dt = \hbar (\alpha k_x + \beta (k_y + k_z))$. Assuming B = 0, the only nonzero ballistic terms from (b) are for k_x (ballistic means collisionless, so τ is set to infinity): $k_x = qE_0 t / \hbar + C$ where C is a constant that must be zero if particle starts at rest (rest means zero velocity and hence $k_x = 0$). Substitution yields $dx/dt = \hbar \alpha (qE_0t/\hbar)$ or $x = \hbar \alpha (qE_0 t^2 / 2\hbar) + D$, where D is a second constant. The distance traveled in real space between t = 0 and t = τ is just $\Delta x = x(t = \tau) - x(t = 0) = \hbar \alpha (qE_0\tau^2/2\hbar)$ #3. (a) for $\tau(U) = \frac{16\pi\sqrt{2m^*}}{CN_*} \left(\frac{\varepsilon_r \varepsilon_0}{a^2}\right)^2 = AU^{-S}$, S = -3/2, $A = \frac{16\pi\sqrt{2m^*}}{CN_*} \left(\frac{\varepsilon_r \varepsilon_0}{a^2}\right)$ and $\Gamma(5/2-S) = CN_*$ $\Gamma(4) = 3! = 6. \text{ So, } <\tau > = \frac{4 \cdot 16\pi \sqrt{2m^*}}{CN_r} \left(\frac{\varepsilon_r \varepsilon_0}{q^2}\right) \frac{6(k_B T)^{3/2}}{3\sqrt{\pi}} = \frac{128\sqrt{2\pi m^*}}{CN_r} \left(\frac{\varepsilon_r \varepsilon_0}{q^2}\right)^2 (k_B T)^{3/2}$ (b) For the given parameters, $\langle \tau \rangle = 3.45 \times 10^{-12}$ and $\langle \mu \rangle = e \langle \tau \rangle / m^* = 9.05 \text{ m}^2 / \text{V-s}$ @ 77 K. (c) By inspection, $\langle u \rangle$ goes as $(m^*)^{-1/2}$, so the reduction in m* will increase the mobility by a factor

(c) By inspection, $\langle u \rangle$ goes as $(m^*)^{-1/2}$, so the reduction in m^* will increase the mobility by a factor of 1.5. Physically, this reflects the fact that the decrease in m^* increases the thermal velocity and therefore the kinetic energy, making the charged impurity scattering less effective.