
Quiz #2 Solutions, ECE215B, Spring 2008 

# 1: For semiclassical Boltzmann eqn, f is a distribution function of the wave-packet position rr , 

wave vector k
r

, and time, t, i.e., ( ), v,f f r t=
r r so that df f dr f dk

dt r dt dtk
∂ ∂

= − −
∂ ∂

rr
rr .(1) 

(b) At any point in time, ( ), ,f r k t drdk N=∫ ∫
r rr r , the number of particles in the solid.  To return to 

equilibrium, we add a scattering term to (1): 0( / ) | [ ( , ) ] / ( )scattdf dt f r k f kτ= − −
r rr  where f0 is the 

equilibrium distribution function and τ(k) is the relaxation time 

c) If / 0f r∂ ∂ =
r  then in the steady state, we get 00 f ff dk

dtk τ
−∂

= − −
∂

r

r  or 0
f dkf f

dtk
τ ∂= −
∂

r

r .  For a 

uniform E  field along x axis and carriers in a spherical (constant-energy) valley in k space, 
( / )( / ) ( / )( / ) ( / )( / )( / )x x x xf k k t f k k t f U U k k t∂ ∂ ∂ ∂ = ∂ ∂ ∂ ∂ = ∂ ∂ ∂ ∂ ∂ ∂

r r
= 

2
0( / )( / *)( / )xf U k m qE∂ ∂ h h  so that 0 0( / *)( / )xf f q k E m f Uτ≈ − ∂ ∂h . 

#2. (a) For any energy band ( )1 ˆ ˆ ˆv ( ) v v vg gx gy gzU k x y z−= ∇ ≡ + +
rrr

h  and / vgdr dt =r r
, where rr   defines 

the location of the wave-packet center.   For the specific energy band 
2 2 2 2( / 2)( 2 2 2 )x y z x y x z y zU k k k k k k k k kα α α β β β= + + + + +h , we get 

( )v ( )gx x y zk k kα β= + +
r

h ;   ( )v ( )gy y x zk k kα β= + +
r

h ;   ( )v ( )gz z x yk k kα β= + +
r

h , and thus 

. ( )/ ( )x y zdx dt k k kα β= + +h ;  ( )/ ( )y x zdy dt k k kα β= + +h ; ( )/ ( )z x ydz dt k k kα β= + +h , 

(b) The vector semiclassical equation of motion is ( )1/ /kdk dt q E U B k τ−= + ∇ × −
r rr r r

h h h .  For 

0 ˆE E x=
r

 and 0 ˆB B z=
r

, the component equations become 

0 0: / [ ( )] /x y x z xx dk dt q E B k k k kα β τ⎡ ⎤= + + + −⎣ ⎦h h  

0: / [ ( )] /y x y z yy dk dt B k k k kα β τ= + + −h h          and       : / /z zz dk dt k τ= −h h . 

In the steady state, dkx/dt = 0, so if B0 = 0, the x component has obvious solution 0 /xk qE τ= h  

(c) From (a), the motion of the wavepacket along x is ( )/ ( )x y zdx dt k k kα β= + +h .  Assuming B = 

0, the only nonzero ballistic terms from (b) are for kx (ballistic means collisionless, so τ is set to 
infinity): 0 /xk qE t C= +h where C is a constant that must be zero if particle starts at rest (rest 
means zero velocity and hence kx = 0) . Substitution yields 0/ ( / )dx dt qE tα= h h  or 

2
0( / 2 )x qE t Dα= +h h , where D is a second constant.  The distance traveled in real space between 

t = 0 and t = τ is just ∆x = x(t = τ) – x(t = 0) =  2
0( / 2 )qEα τh h    
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(b) For the given parameters, <τ> = 3.45x10-12 and <µ> =e<τ>/m* = 9.05 m2/V-s @ 77 K. 
(c) By inspection, <u> goes as (m*)-1/2, so the reduction in m* will increase the mobility by a factor 
of   1.5.  Physically, this reflects the fact that the decrease in m* increases the thermal velocity and 
therefore the kinetic energy, making the charged impurity scattering less effective. 

    


