\# 1: For semiclassical Boltzmann eqn, f is a distribution function of the wave-packet position \vec{r}, wave vector \vec{k}, and time, t, i.e., $f=f(\vec{r}, \vec{v}, t)$ so that $\frac{d f}{d t}=-\frac{\partial f}{\partial \vec{r}} \frac{d \vec{r}}{d t}-\frac{\partial f}{\partial \vec{k}} \frac{d \vec{k}}{d t}$.(1)
(b) At any point in time, $\iint f(\vec{r}, \vec{k}, t) d \vec{r} d \vec{k}=N$, the number of particles in the solid. To return to equilibrium, we add a scattering term to (1): $\left.(d f / d t)\right|_{\text {scatt }}=-\left[f(\vec{r}, \vec{k})-f_{0}\right] / \tau(\vec{k})$ where f_{0} is the equilibrium distribution function and $\tau(\mathrm{k})$ is the relaxation time
c) If $\partial f / \partial \vec{r}=0$ then in the steady state, we get $0=-\frac{\partial f}{\partial \vec{k}} \frac{d \vec{k}}{d t}-\frac{f-f_{0}}{\tau}$ or $f=f_{0}-\tau \frac{\partial f}{\partial \vec{k}} \frac{d \vec{k}}{d t}$. For a uniform E field along x axis and carriers in a spherical (constant-energy) valley in k space, $(\partial f / \partial \vec{k})(\partial \vec{k} / \partial t)=\left(\partial f / \partial k_{x}\right)\left(\partial k_{x} / \partial t\right)=(\partial f / \partial U)\left(\partial U / \partial k_{x}\right)\left(\partial k_{x} / \partial t\right)=$ $(\partial f / \partial U)\left(\hbar^{2} k_{x} / m^{*}\right)\left(q E_{0} / \hbar\right)$ so that $f \approx f_{0}-\left(q \hbar k_{x} E_{0} \tau / m^{*}\right)(\partial f / \partial U)$.
\#2. (a) For any energy band $\overrightarrow{\mathrm{v}}_{g}=(\hbar)^{-1} \vec{\nabla} U(\vec{k}) \equiv \mathrm{v}_{g x} \hat{x}+\mathrm{v}_{g y} \hat{y}+\mathrm{v}_{g z} \hat{z}$ and $d \vec{r} / d t=\overrightarrow{\mathrm{v}}_{g}$, where \vec{r} defines the location of the wave-packet center. For the specific energy band $U=\left(\hbar^{2} / 2\right)\left(\alpha k_{x}^{2}+\alpha k_{y}^{2}+\alpha k_{z}^{2}+2 \beta k_{x} k_{y}+2 \beta k_{x} k_{z}+2 \beta k_{y} k_{z}\right)$, we get
$\overrightarrow{\mathrm{v}}_{g x}=\hbar\left(\alpha k_{x}+\beta\left(k_{y}+k_{z}\right)\right) ; \quad \overrightarrow{\mathrm{v}}_{g y}=\hbar\left(\alpha k_{y}+\beta\left(k_{x}+k_{z}\right)\right) ; \quad \overrightarrow{\mathrm{v}}_{g z}=\hbar\left(\alpha k_{z}+\beta\left(k_{x}+k_{y}\right)\right)$, and thus $. d x / d t=\hbar\left(\alpha k_{x}+\beta\left(k_{y}+k_{z}\right)\right) ; d y / d t=\hbar\left(\alpha k_{y}+\beta\left(k_{x}+k_{z}\right)\right) ; d z / d t=\hbar\left(\alpha k_{z}+\beta\left(k_{x}+k_{y}\right)\right)$, (b) The vector semiclassical equation of motion is $\hbar d \vec{k} / d t=q\left(\vec{E}+\hbar^{-1} \vec{\nabla}_{k} U \times \vec{B}\right)-\hbar \vec{k} / \tau$. For $\vec{E}=E_{0} \hat{X}$ and $\vec{B}=B_{0} \hat{z}$, the component equations become

$$
x: \hbar d k_{x} / d t=q\left[E_{0}+B_{0}\left[\alpha k_{y}+\beta\left(k_{x}+k_{z}\right)\right]\right]-\hbar k_{x} / \tau
$$

$y: \hbar d k_{y} / d t=B_{0}\left[\alpha k_{x}+\beta\left(k_{y}+k_{z}\right)\right]-\hbar k_{y} / \tau \quad$ and $\quad z: \hbar d k_{z} / d t=-\hbar k_{z} / \tau$.
In the steady state, $\mathrm{dk}_{\mathrm{x}} / \mathrm{dt}=0$, so if $\mathrm{B}_{0}=0$, the x component has obvious solution $k_{x}=q E_{0} \tau / \hbar$
(c) From (a), the motion of the wavepacket along x is $d x / d t=\hbar\left(\alpha k_{x}+\beta\left(k_{y}+k_{z}\right)\right)$. Assuming $\mathrm{B}=$ 0 , the only nonzero ballistic terms from (b) are for k_{x} (ballistic means collisionless, so τ is set to infinity): $k_{x}=q E_{0} t / \hbar+C$ where C is a constant that must be zero if particle starts at rest (rest means zero velocity and hence $\left.\mathrm{k}_{\mathrm{x}}=0\right)$. Substitution yields $d x / d t=\hbar \alpha\left(q E_{0} t / \hbar\right)$ or $x=\hbar \alpha\left(q E_{0} t^{2} / 2 \hbar\right)+D$, where D is a second constant. The distance traveled in real space between $\mathrm{t}=0$ and $\mathrm{t}=\tau$ is just $\Delta \mathrm{x}=\mathrm{x}(\mathrm{t}=\tau)-\mathrm{x}(\mathrm{t}=0)=\hbar \alpha\left(q E_{0} \tau^{2} / 2 \hbar\right)$
\#3. (a) for $\tau(U)=\frac{16 \pi \sqrt{2 m^{*}}}{C N_{I}}\left(\frac{\varepsilon_{r} \varepsilon_{0}}{q^{2}}\right)^{2}=A U^{-S}, \mathrm{~S}=-3 / 2, A=\frac{16 \pi \sqrt{2 m^{*}}}{C N_{I}}\left(\frac{\varepsilon_{r} \varepsilon_{0}}{q^{2}}\right)$ and $\Gamma(5 / 2-\mathrm{S})=$
$\Gamma(4)=3!=6$. So, $\left\langle\tau>=\frac{4 \cdot 16 \pi \sqrt{2 m^{*}}}{C N_{I}}\left(\frac{\varepsilon_{r} \varepsilon_{0}}{q^{2}}\right) \frac{6\left(k_{B} T\right)^{3 / 2}}{3 \sqrt{\pi}}=\frac{128 \sqrt{2 \pi m^{*}}}{C N_{I}}\left(\frac{\varepsilon_{r} \varepsilon_{0}}{q^{2}}\right)^{2}\left(k_{B} T\right)^{3 / 2}\right.$
(b) For the given parameters, $\langle\tau\rangle=3.45 \times 10^{-12}$ and $\langle\mu\rangle=\mathrm{e}\langle\tau\rangle / \mathrm{m}^{*}=9.05 \mathrm{~m}^{2} / \mathrm{V}$-s @ 77 K .
(c) By inspection, $<\mathrm{u}>$ goes as $\left(\mathrm{m}^{*}\right)^{-1 / 2}$, so the reduction in m^{*} will increase the mobility by a factor of 1.5. Physically, this reflects the fact that the decrease in m^{*} increases the thermal velocity and therefore the kinetic energy, making the charged impurity scattering less effective.

