What are the key elements of this 'new' fabrication technology?

- Making a pattern (template)
- Transferring that template into your material
- 1. Lithography
- 2. Metalization and making contact to the outside world
- 3. Defining local electronic behavior: doping
- 4. Isolating electronic regions: oxidation
- 5. Carving out different regions of the material: etching

Wet Chemical Etches: provide different etched profiles

Figure 4.32 Isotropic etching of Si with (A) and without (B) etchant solution agitation.

Isotropic etch

Figure 19.10 Cross section (A) and top view (B) of pyramidal holes and cavities formed in a (100) silicon wafer with an anisotropic etchant.

Figure 19.11 Effect of mask opening orientation on the etch profile. (A) Top view of mask openings as oriented to the <110> direction. (B) Etched structures resulting for an anisotropic etchant on (100) silicon.

Crystallographic etch

Figure 11.6 (100) silicon wafers after directional etching in KOH, isopropyl alcohol, and water. The upper photo shows a 50-mm-deep etch. The lower photographs are of 80-mm-deep trenches etched at 10 mm pitch on (110) and 107 off (110) (*after Bean*, ©1978 IEEE).

Deep etches with high aspect ratios possible: with careful understanding of crystal orientations

3-component Etch of Silicon

Etching generally a combination of *oxidation* (breaking bonds) and making the oxidized form *soluble in solution*

Etch Rate of Silicon in HF/HNO₃/dilutent

Figure 11.4 The etch rate of silicon in HF and HFO₃ (after Schwarz and Robbins, reprinted by permission of the publisher, The Electrochemical Society Inc.).

A Schematic View of the Etch Process

Figure 4.2 Schematic generalized representations of the concentration of the oxidizing component, H₂O₂, in the etch solution close to the surface and inside the thin surface oxide, during a wet chemical etching process
 Etch behavior with diffusion characteristics
 Etch behavior with a reaction characteristics

Diffusion-limited etching

Material-transport limited Can provide mirror-like surfaces

Diffusion-limited, effects of mass transport seen in etch profiles

$\begin{array}{c} 60 \\ 0 \\ -10 \\ -10 \\ -20 \\ -30 \\ -30 \\ -40 \\ 0 \\ Level \end{array}$

Fig. 1. The etching profile across the mask edge measured by Tencor Instrument model 200. n-type (100) GaSb in 2% Br₂ solution at room temperature for 1 min.

Etching of GaSb in 2% Br solution

Now to gas-phase etching

Tan et al., Diffusion Limited Chemical Etching Effects in Semiconductors, Solid State Electronics, 38, p 17 (1995)

Simulated etched profile

Fig. 8. The simulation etching profile in Shaw's experiment[1].

Etch rate of GaAs in $H_2SO_4:H_2O_2:H_2O_3$

Figure 11.5 The etch rate of GaAs in H_2SO_4 , H_2O_2 , and H_2O . The bottom leg is the concentration of H_2SO_4 , the left leg is H_2O , and the right leg is H_2O_2 . All scales increase in the clockwise direction (*after Iida and Ito, reprinted by permission of the publisher, The Electrochemical Society Inc.*).

Selectivities possible with chemical etchants

According to material

Dubrovko Babic

According to Doping

Runyan & Bean, Semiconductor Integrated Circuit Processing

Etch rate of Si, using Ar⁺ AND XeF₂ MUCH GREATER than sum of etch rates using either Ar⁺ or XeF₂ alone.

Coburn & Winters, J. Appl. Phys. 50, 3189 (1979)

Chlorine greatly enhances etch rate of Silicon in Ar⁺

Fluorine RETARDS etch rate of Al in Ar⁺

What Can an Ion Do to a Substrate?

Figure 12.12 Possible outcomes for an ion incident on the surface of a wafer.

Mechanism of Etching

How do ions enhance the chemical etch rate?

An Etch Mechanism

F

F

(III)

Figure 11.8 Proposed mechanism of plasma etching of silicon in CF₄. A 1- to 5-atom-thick SiF_x layer forms on the surface. A silicon atom on the upper level is bonded to two fluorine atoms. An additional fluorine atom may remove the silicon as SiF₂. Much more likely, however, is that additional fluorine atoms bond to the silicon atom until SiF₄ forms and desorbs (*after Manos and Flamm, reprinted by permission, Academic Press*).

Need to achieve the right balance between physical and chemical etching

Ion Milling: Purely Physical Etching

Figure 11.14 Cross section schematic of a Kaufman ion source.

Figure 11.15 Problems that may occur during ion milling: (A) mask taper transfer, (B) redeposition from the mask, and (C) trenching.

Reactive Ion Etching: parallel plate reactor

Figure 10.14 A simple parallel plate plasma reactor.

Figure 10.18 Typical plot of dc voltage as a function of position in an RF plasma.

Fine-tuning Etch Parameters to Achieve Desired Outcomes

Controllable Parameters

- Choice of gases
 - Flow rates
- Plasma pressure
- Power into plasma
- Voltage between plasma and substrate
- Temperature of substrate

- Generally few 100 mTorr
- Several hundred watts
- ~ 100 500 V
- Generally room temperature

Fine-tuning Etch Parameters to Achieve Desired Outcomes

Controllable Parameters

- Choice of gases
 - Flow rates
- Plasma pressure
- Power into plasma
- Voltage between plasma and substrate
- Temperature of substrate

Desired Process Features

- Fidelity of the etch
 - No mask erosion
 - No undercut
 - No 'overcut'
- Rapid etch rate
- High etch selectivity: controlled etch depth
- Low damage

Predicting 'Etchability' in F-containing and Clcontaining gases

Element	F compound	T _b (°C)	Cl compound	T _b (°C)
Al	AIF ₃	1291 T _s	AICI ₃	177 T _s
Si	SiF ₄	-86	SiCl ₄	58
Ga	GaF ₃	~1000	GaCl ₃	201
As	AsF ₃	-63	AsCl ₃	63
Ni	NiF ₂	1000Ts	NiCl ₂	973 Ts
In	InF ₃	>1200	InCl ₃	300 T _s

• Fluorine gases: can etch Si , poorly etch GaAs, WON'T etch AlGaAs

• Ni would be a good masking material

• InP difficult to etch in fluorine or chlorine-containing gases

Common chlorine-containing gases

NF₃

CHF₃

C-containing gases can polymerize in the plasma, forming a polymer that deposits on the wafer

 O_2 removes polymers and organic materials (CO_2)

H₂: etches oxides Ar, He (inert gases) : can enhance physical etch mechanisms

For InP: a 'reverse deposition process': $H_2 + PH_3 + In(CH_3)_3 \rightarrow InP + CH_4 + H_2$

Selective etching of Si and SiO₂

Oxygen initially increases etch rate: Reduces CF_x polymerization

Figure 11.11 Etch rate of Si and SiO₂ in (A) CF_4/O_2 plasma (after Mogab et al., reprinted by permission, AIP), and (B) CF_4/H_2 plasma (after Ephrath and Petrillo, reprinted by permission, AIP), and Hydrogen enhances CF_x polymerization, Slows etch rates, unless oxygen present

Using oxygen to achieve selective etching of GaAs and AIGaAs

SELECTIVITY AS A FUNCTION OF OXYGEN CONCENTRATION

Al reacts much more readily with OXYGEN, forming an oxide

Fine-tuning Etch Parameters to Achieve Desired Outcomes

Controllable Parameters

- Choice of gases
 - Flow rates
- Plasma pressure
- Power into plasma
- Voltage between plasma and substrate
- Temperature of substrate

Desired Process Features

- Fidelity of the etch
 - No mask erosion
 - No undercut
 - No 'overcut'
- Rapid etch rate
- High etch selectivity: controlled etch depth
- Low damage

Fine-tuning Etch Parameters to Achieve Desired Outcomes

Controllable Parameters Choice of gases Flow rates Plasma pressure

- Power into plasma
- Voltage between plasma and substrate
- Temperature of substrate

Mixing and matching gases to get

- Straight walls, sloped walls
- Faster etch rates
- Etch material faster than mask (selectivity)
- Etch polymers

What is the difference between

- Plasma etching (barrel etcher/asher)
- RIE
- ICP?

Forming polymers in CH₄/H₂/Ar etching of InP

No O_2

(a)

 $4 \operatorname{sccm} O_2$

Etch gas composition: $CH_4/H_2/Ar = 4/20/10$ 75 mTorr, 500 V

Schramm et al., JVSTB 15, [1997]

6 sccm O₂

Different pressures for etch processes

Figure 11.2 Types of etch processes on a chamber pressure scale.

High Pressure ->

- higher plasma density, higher etch rates
- Lower bias voltages -> more chemical etching (less directionality?)
- Higher ion scattering -> less directionality

Reactive Ion Etcher (RIE)

Inductively Couple Plasma (ICP) Etcher

Figure 10.14 A simple parallel plate plasma reactor.

- Few mTorr 100 mTorr pressure
- Few hundred volts bias

POWER TO PLASMA AND BIAS TO SUBSTRATE ARE COUPLED

Does choice of etcher make a difference?

High Density Plasma

Separate control of plasma power and substrate bias

HIGH etch rates with LOW damage, at low pressure

Etching Holes in Photonic Crystal Cavities

RIE $\Delta r / a = 12\%$ *Q* = 4000

Use RIE to etch into GaAs Selectively wet etch AlGaAs

Etching Holes in Photonic Crystal Cavities

RIE $\Delta r / a = 12\%$ *Q* = 4000

Redesigning the etch process to use ICP etching

Sensitivity to fabrication

Reactive ions (e.g. Cl+)

When the etched features are very narrow (high aspect ratio = depth/width)...small changes in ion angles can produce big changes in the etched features

Ion Scattering in Dense Geometries

- ZnTe, patterned with
 60 nm Ti dots
- Etched in CH4/H2 = 5/40 sccm, 150W, 1000V
- Shape of etched profile changes depending on the density of the local environment: all etch conditions the same

Science **319**, 1050 (2008)

Ultimate etching?

- Etched trenches in silicon: aspect ratio of 80:1
- 7 x 10 ¹¹ trenches on a wafer: combined length of 4000 km
- If Taipei 101 were scaled so that its width would fit the trench, it could stack up <u>10</u> <u>times</u> within a trench

•

- Ground to highest architectural structure (spire): 509.2 metres (1,670.60 ft).
- *Ground to roof:* 449.2 m (1,473.75 ft).

http://en.wikipedia.org/wiki/Taipei_101

Figure 11.6 (100) silicon wafers after directional etching in KOH, isopropyl alcohol, and water. The upper photo shows a 50-mm-deep etch. The lower photographs are of 80-mm-deep trenches etched at 10 mm pitch on (110) and 107 off (110) (*after Bean*, ©1978 IEEE).

Deep etches with high aspect ratios possible: with careful understanding of crystal orientations