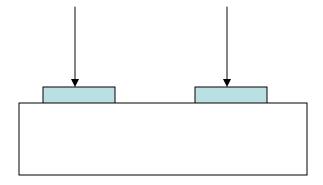

Figure (4) Before sintering

Tip position	1	2	3
Resistance	3.7 Ω	48 Ω	110 Ω
Tips Distance	~4mm	~4mm	~8mm


After sintering

Tip position	1	2	3
Resistance	3.6 Ω	700 Ω	2400 Ω
Tips distance	~4mm	~4mm	~8mm

Table (1)

Positions 2 and 3

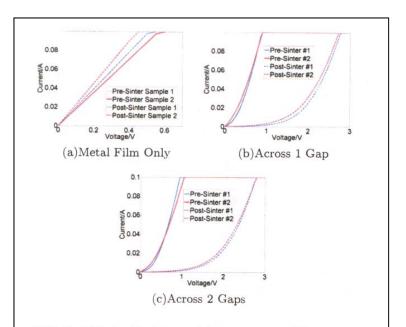


FIG. 3: 2-Probe Resistance Measurements. These are 2-probe IV curves across the right-hand horizontal metal trace in 1 (3(a)), across one silicon gap as measured between an endpoint and the middle of the blue line in Figure 1(a) (3(b)), and across both silicon gaps as measured at the endpoints of the blue line in Figure 1(a) (3(c)).

Resistance	Al-Si-Al (Channel—Channel)	Al-Si-Al (Square to Channel)	Al-Al (Film)
(Resistivity)			-
Before Sintering	29 Ohms	152.4 Ohms	6.9 Ohms (4.16*10^-8 Ohms-m
After Sintering	151 Ohms	449 Ohms	7.3 Ohms (4.40*10^-8 Ohms-m

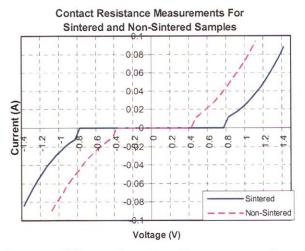
Short Rectangle (Length = 2600 um)	Sample 1	Sample 1 Sintered	Sample 2
Resistance	(3.1 Ω)	2.75 Ω (1.9 Ω)	3.24Ω (2.6Ω)
Width	513 um	513 um	507 um
Thickness	0.2 um	0.2 um	0.2 um
Resistance (Square*Thickness in um)		0.542 Ω/(□)	0.633 Ω/(□)
Resistivity (2.82E-8 Ω-m)		1.1E-7 Ω-m	1.3E-7 Ω-m

Table 1: Measured and calculated resistance data for small aluminum rectangle. Data in parenthesis is from ohm-meter

Aluminum only

- small change in R after sintering
- resistivity 10x 'quoted' values
- 500 microns by 2.6 mm

How much of a change in Al resistivity would you expect to see, after sintering?

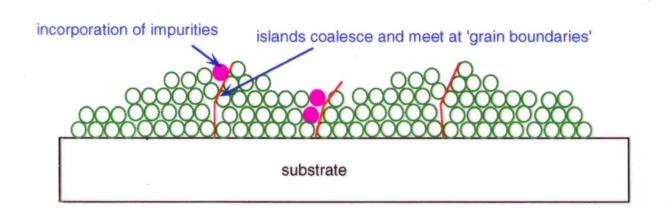

Suppose resistivity started at 10 $^{-5}$ ohm-cm Decreased by a factor of 5 to 5 \times 10 $^{-6}$ ohm-cm

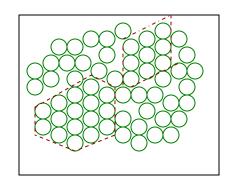
Short Rectangle	Sample 1	Sample 1	Sample 2
(Length = 2600 um)		Sintered	
Resistance		2.75 Ω	3.24 Ω
	(3.1Ω)	(1.9Ω)	(2.6Ω)
Width	513 um	513 um	507 um
Thickness	0.2 um	0.2 um	0.2 um
Resistance		0.542	0.633
(Square*Thickness in um)		$\Omega/(\Box)$	$\Omega/(\Box)$
Resistivity (2.82E-8 Ω-m)		1.1E-7 Ω-m	1.3E-7 Ω-m

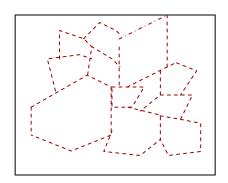
Table 1: Measured and calculated resistance data for small aluminum rectangle. Data in parenthesis is from ohm-meter

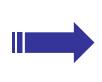
Aluminum only

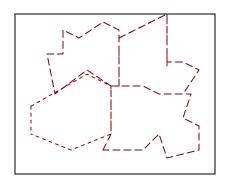
- small change in R after sintering
- resistivity 10x 'quoted' values
- 500 microns by 2.6 mm

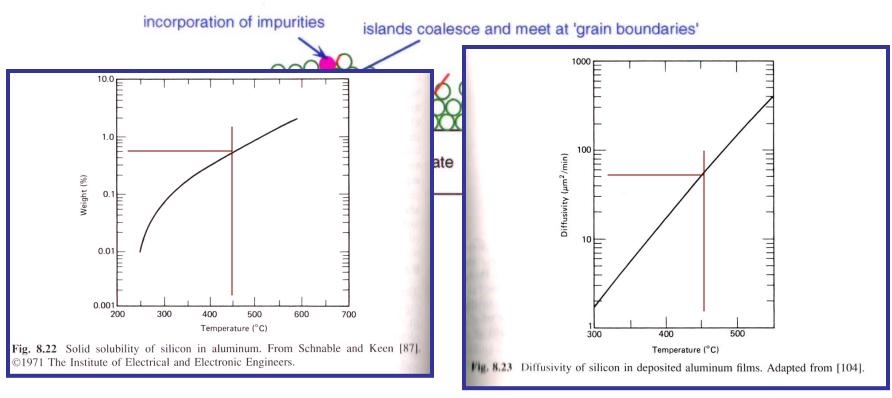

Graph 2: V-I curve between adjacent squares through silicon


Square to Square (Seperation = 3300um)	Sample 1	Sample 1 Sintered	Sample 2
Resistance	n/a (288 Ω)	5.86 Ω (650 Ω)	6.79 Ω (130 Ω)
Silicon Thickness	520 um	520 um	520 um
Contact offset Voltage	n/a	0.78 V	0.41 V
Silicon Resistivity (.005 to .02 Ω-cm nominal)	n/a	0.046	0.053


Table 2: Measured and Calculated Data on the Silicon/ Aluminum contact interface, and calculated silicon resistivity. Data in parenthesis is from ohm-meter

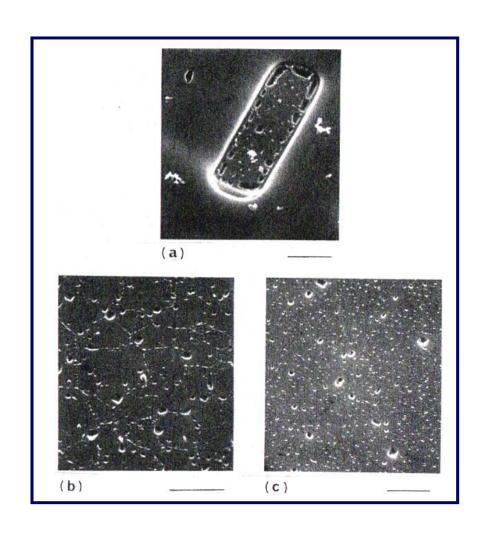

Sintering: for grain growth


450 *C*, 15-30 minutes

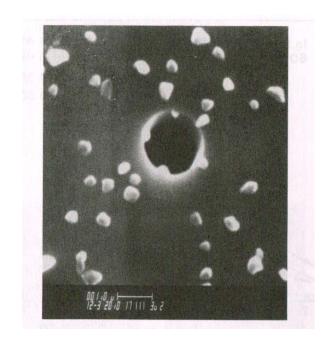


Sintering: what happens at the interface?

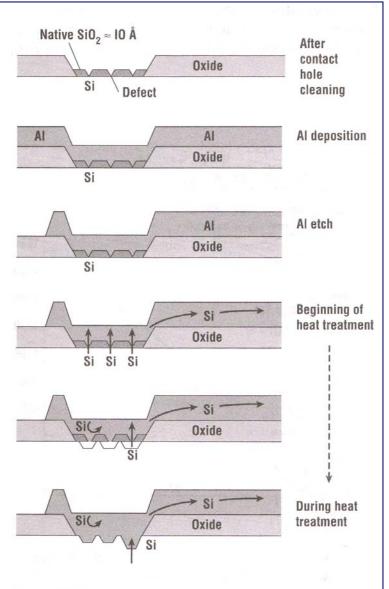
450 C, 15-30 minutes

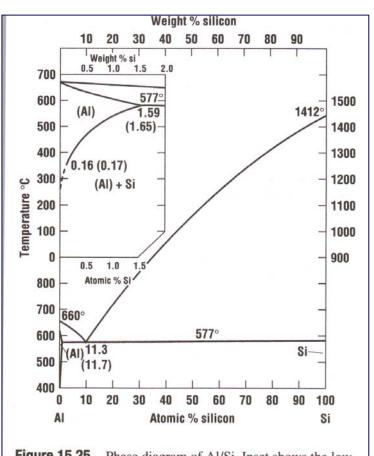

Solid Solubility of Si in Al

Solid solubility of Al in Si: 0.0011 wt % at 600C


The consequences of these interactions?

Diffusivity of Si in Al films


Ghandhi, VLSI Fabrication Principles 2nd Edition, pp 562-3


A method to prevent excessive diffusion of Si into Al?

450 C, 30 min. in H_2

Figure 15.26 Cross-sectional diagrams of Al on Si contact formation process (after Wolf, reprinted by permission, Lattice Press).

Figure 15.25 Phase diagram of Al/Si. Inset shows the low concentration region.