Semiconductor

## ADC101S101

## Single Channel, 0.5 to 1 Msps, 10-Bit A/D Converter

## General Description

The ADC101S101 is a low-power, single channel, CMOS 10-bit analog-to-digital converter with a high-speed serial interface. Unlike the conventional practice of specifying performance at a single sample rate only, the ADC101S101 is fully specified over a sample rate range of 500 ksps to 1 Msps. The converter is based upon a successiveapproximation register architecture with an internal track-and-hold circuit.
The output serial data is straight binary, and is compatible with several standards, such as $\mathrm{SPI}^{\text {TM }}$, QSPI ${ }^{\text {TM }}$, MICROWIRE, and many common DSP serial interfaces.

The ADC101S101 operates with a single supply that can range from +2.7 V to +5.25 V . Normal power consumption using a +3 V or +5 V supply is 2.0 mW and 10 mW , respectively. The power-down feature reduces the power consumption to as low as $2.5 \mu \mathrm{~W}$ using a +5 V supply.
The ADC101S101 is packaged in 6-lead LLP and SOT-23 packages. Operation over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ is guaranteed.

## Features

- Specified over a range of sample rates.
- 6-lead LLP and SOT-23 packages
- Variable power management
- Single power supply with $2.7 \mathrm{~V}-5.25 \mathrm{~V}$ range

■ SPI $^{\text {TM }} /$ QSPI ${ }^{\text {TM } / M I C R O W I R E / D S P ~ c o m p a t i b l e ~}$

## Key Specifications

- DNL
- INL
+0.3 / -0.2 LSB (typ)
- 
- Power Consumption
- 3V Supply
-5V Supply


## Applications

- Portable Systems
- Remote Data Aquisitions
- Instrumentation and Control Systems


## Pin-Compatible Alternatives by Resolution and Speed

All devices are fully pin and function compatible.

| Resolution | Specified for Sample Rate Range of: |  |  |
| :---: | :---: | :---: | :---: |
|  | $\mathbf{5 0}$ to $\mathbf{2 0 0} \mathbf{~ k s p s}$ | $\mathbf{2 0 0}$ to $\mathbf{5 0 0} \mathbf{~ k s p s}$ | $\mathbf{5 0 0} \mathbf{k s p s}$ to $\mathbf{1}$ Msps |
| 12-bit | ADC121S021 | ADC121S051 | ADC121S101 |
| 10-bit | ADC101S021 | ADC101S051 | ADC101S101 |
| 8-bit | ADC081S021 | ADC081S051 | ADC081S101 |

## Connection Diagram



20145205

## Ordering Information

| Order Code | Temperature Range | Description | Top Mark |
| :--- | :---: | :---: | :---: |
| ADC101S101CISD | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 6-Lead LLP Package | X2C |
| ADC101S101CISDX | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 6-Lead LLP Package, Tape \& Reel | X2C |
| ADC101S101CIMF | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 6-Lead SOT-23 Package | X02C |
| ADC101S101CIMFX | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 6-Lead SOT-23 Package, Tape \& Reel | X02C |
| ADC101S101EVAL |  | SOT-23 Evaluation Board |  |

Block Diagram


## Pin Descriptions and Equivalent Circuits

| Pin No. | Symbol | Description |
| :---: | :---: | :---: |
| ANALOG I/O |  |  |
| 3 | $\mathrm{V}_{\text {IN }}$ | Analog input. This signal can range from 0 V to $\mathrm{V}_{\mathrm{A}}$. |
| DIGITAL I/O |  |  |
| 4 | SCLK | Digital clock input. This clock directly controls the conversion and readout processes. |
| 5 | SDATA | Digital data output. The output samples are clocked out of this pin on falling edges of the SCLK pin. |
| 6 | $\overline{\mathrm{CS}}$ | Chip select. On the falling edge of $\overline{\mathrm{CS}}$, a conversion process begins. |
| POWER SUPPLY |  |  |
| 1 | $\mathrm{V}_{\text {A }}$ | Positive supply pin. This pin should be connected to a quiet +2.7 V to +5.25 V source and bypassed to GND with a $1 \mu \mathrm{~F}$ capacitor and a $0.1 \mu \mathrm{~F}$ monolithic capacitor located within 1 cm of the power pin. |
| 2 | GND | The ground return for the supply and signals. |
| PAD | GND | For package suffix $\operatorname{CISD}(\mathrm{X})$ only, it is recommended that the center pad should be connected to ground. |

Absolute Maximum Ratings (Notes 1, 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

| Analog Supply Voltage $\mathrm{V}_{\mathrm{A}}$ | -0.3 V to 6.5 V |
| :--- | ---: |
| Voltage on Any Pin to GND | -0.3 V to $\left(\mathrm{V}_{\mathrm{A}}+0.3\right) \mathrm{V}$ |
| Input Current at Any Pin (Note 3) | $\pm 10 \mathrm{~mA}$ |
| Package Input Current (Note 3) | $\pm 20 \mathrm{~mA}$ |
| Power Consumption at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | See (Note 4) |
| ESD Susceptibility (Note 5) |  |
| Human Body Model | 3500 V |
| $\quad$ Machine Model | 300 V |
| Junction Temperature | $+150^{\circ} \mathrm{C}$ |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Operating Ratings (Notes 1, 2)

| Operating Temperature Range | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{A}}$ Supply Voltage | +2.7 V to +5.25 V |
| Digital Input Pins Voltage Range | -0.3 V to +5.25 V |
| $\quad$ (regardless of supply voltage) | 1 MHz to 20 MHz |
| Clock Frequency | up to 1 Msps |
| Sample Rate | 0 V to $\mathrm{V}_{\mathrm{A}}$ |

## Package Thermal Resistance

| Package | $\theta_{\text {JA }}$ |
| :---: | :---: |
| 6-lead LLP | $94^{\circ} \mathrm{C} / \mathrm{W}$ |
| 6 -lead SOT-23 | $265^{\circ} \mathrm{C} / \mathrm{W}$ |

Soldering process must comply with National Semiconductor's Reflow Temperature Profile specifications. Refer to www.national.com/packaging. (Note 6)

## ADC101S101 Converter Electrical Characteristics (Notes 7, 9)

The following specifications apply for $\mathrm{V}_{\mathrm{A}}=+2.7 \mathrm{~V}$ to 5.25 V , $\mathrm{GND}=0 \mathrm{~V}, \mathrm{f}_{\mathrm{SCLK}}=10 \mathrm{MHz}$ to $20 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$,
$\mathrm{f}_{\text {SAMPLE }}=500 \mathrm{ksps}$ to 1 Msps , unless otherwise noted. Boldface limits apply for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ : all other limits $\mathrm{T}_{\mathrm{A}}=$ $25^{\circ} \mathrm{C}$.

| Symbol | Parameter | Conditions | Typical | Limits <br> (Note 9) | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STATIC CONVERTER CHARACTERISTICS |  |  |  |  |  |
|  | Resolution with No Missing Codes |  |  | 10 | Bits |
| INL | Integral Non-Linearity | $\mathrm{V}_{\mathrm{A}}=+2.7 \mathrm{~V}$ to +5.25 V | $\pm 0.2$ | $\pm 0.7$ | LSB (max) |
| DNL | Differential Non-Linearity | $\mathrm{V}_{\mathrm{A}}=+2.7 \mathrm{~V}$ to +5.25 V | +0.3 | $\pm 0.7$ | LSB (max) |
|  |  |  | -0.2 |  | LSB (min) |
| $\mathrm{V}_{\text {OFF }}$ | Offset Error | $\mathrm{V}_{\mathrm{A}}=+2.7 \mathrm{~V}$ to +5.25 V | $\pm 0.1$ | $\pm 0.7$ | LSB (max) |
| GE | Gain Error | $\mathrm{V}_{\mathrm{A}}=+2.7 \mathrm{~V}$ to +5.25 V | $\pm 0.2$ | $\pm 1.0$ | LSB (min) |
| DYNAMIC CONVERTER CHARACTERISTICS |  |  |  |  |  |
| SINAD | Signal-to-Noise Plus Distortion Ratio | $\begin{aligned} & \mathrm{V}_{\mathrm{A}}=+2.7 \text { to } 5.25 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz},-0.02 \mathrm{dBFS} \end{aligned}$ | 61.7 | 61 | dB (min) |
| SNR | Signal-to-Noise Ratio | $\begin{aligned} & \mathrm{V}_{\mathrm{A}}=+2.7 \text { to } 5.25 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz},-0.02 \mathrm{dBFS} \\ & \hline \end{aligned}$ | 62 | 61.2 | dB (min) |
| THD | Total Harmonic Distortion | $\begin{aligned} & \mathrm{V}_{\mathrm{A}}=+2.7 \text { to } 5.25 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz},-0.02 \mathrm{dBFS} \end{aligned}$ | -77 | -73 | dB (max) |
| SFDR | Spurious-Free Dynamic Range | $\begin{aligned} & \mathrm{V}_{\mathrm{A}}=+2.7 \text { to } 5.25 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz},-0.02 \mathrm{dBFS} \\ & \hline \end{aligned}$ | 78 | 74 | dB (min) |
| ENOB | Effective Number of Bits | $\begin{aligned} & \mathrm{V}_{\mathrm{A}}=+2.7 \text { to } 5.25 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz},-0.02 \mathrm{dBFS} \\ & \hline \end{aligned}$ | 9.9 | 9.8 | Bits (min) |
| IMD | Intermodulation Distortion, Second Order Terms | $\begin{aligned} & \mathrm{V}_{\mathrm{A}}=+5.25 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{a}}=103.5 \mathrm{kHz}, \mathrm{f}_{\mathrm{b}}=113.5 \mathrm{kHz} \end{aligned}$ | -78 |  | dB |
|  | Intermodulation Distortion, Third Order Terms | $\begin{aligned} & \mathrm{V}_{\mathrm{A}}=+5.25 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{a}}=103.5 \mathrm{kHz}, \mathrm{f}_{\mathrm{b}}=113.5 \mathrm{kHz} \end{aligned}$ | -78 |  | dB |
| FPBW | -3 dB Full Power Bandwidth | $\mathrm{V}_{\mathrm{A}}=+5 \mathrm{~V}$ | 11 |  | MHz |
|  |  | $\mathrm{V}_{\mathrm{A}}=+3 \mathrm{~V}$ | 8 |  | MHz |

ADC101S101 Converter Electrical Characteristics (Notes 7, 9) (Continued)
The following specifications apply for $\mathrm{V}_{\mathrm{A}}=+2.7 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{f}_{\mathrm{SCLK}}=10 \mathrm{MHz}$ to $20 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$,
$f_{\text {SAMPLE }}=500 \mathrm{ksps}$ to 1 Msps , unless otherwise noted. Boldface limits apply for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ : all other limits $\mathrm{T}_{\mathrm{A}}=$ $25^{\circ} \mathrm{C}$.

| Symbol | Parameter | Conditions | Typical | Limits (Note 9) | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG INPUT CHARACTERISTICS |  |  |  |  |  |
| $\mathrm{V}_{\text {IN }}$ | Input Range |  | 0 to $\mathrm{V}_{\mathrm{A}}$ |  | V |
| $\mathrm{I}_{\text {DCL }}$ | DC Leakage Current |  |  | $\pm 1$ | $\mu \mathrm{A}$ (max) |
| $\mathrm{C}_{\text {INA }}$ | Input Capacitance | Track Mode | 30 |  | pF |
|  |  | Hold Mode | 4 |  | pF |

## DIGITAL INPUT CHARACTERISTICS

| $\mathrm{V}_{\mathrm{IH}}$ | Input High Voltage | $\mathrm{V}_{\mathrm{A}}=+5.25 \mathrm{~V}$ |  | $\mathbf{2 . 4}$ | $\mathrm{~V}(\mathrm{~min})$ |
| :--- | :--- | :--- | :--- | :---: | :---: |
|  |  | $\mathrm{V}_{\mathrm{A}}=+3.6 \mathrm{~V}$ |  | $\mathbf{2 . 1}$ | $\mathrm{~V}(\mathrm{~min})$ |
| $\mathrm{V}_{\mathrm{IL}}$ | Input Low Voltage | $\mathrm{V}_{\mathrm{A}}=+5 \mathrm{~V}$ |  | $\mathbf{0 . 8}$ | $\mathrm{~V}(\mathrm{max})$ |
|  |  | $\mathrm{V}_{\mathrm{A}}=+3 \mathrm{~V}$ |  | $\mathbf{0 . 4}$ | $\mathrm{~V}(\mathrm{max})$ |
| $\mathrm{I}_{\mathrm{IN}}$ | Input Current | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{A}}$ | $\pm 0.1$ | $\pm 1$ | $\mu \mathrm{~A}(\mathrm{max})$ |
| $\mathrm{C}_{\mathrm{IND}}$ | Digital Input Capacitance |  | 2 | $\mathbf{4}$ | $\mathrm{pF}(\mathrm{max})$ |

DIGITAL OUTPUT CHARACTERISTICS

| $\mathrm{V}_{\mathrm{OH}}$ | Output High Voltage | $\mathrm{I}_{\text {SOURCE }}=200 \mu \mathrm{~A}$ | $\mathrm{V}_{\mathrm{A}}-0.07$ | $\mathrm{V}_{\mathrm{A}}-0.2$ | V (min) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{I}_{\text {SOURCE }}=1 \mathrm{~mA}$ | $\mathrm{V}_{\mathrm{A}}-0.1$ |  | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Low Voltage | $\mathrm{I}_{\text {SINK }}=200 \mu \mathrm{~A}$ | 0.03 | 0.4 | V (max) |
|  |  | $\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}$ | 0.1 |  | V |
| $\begin{aligned} & \hline \mathrm{I}_{\mathrm{OZH}}, \\ & \mathrm{I}_{\mathrm{OZL}} \\ & \hline \end{aligned}$ | TRI-STATE® Leakage Current |  | $\pm 0.1$ | $\pm 10$ | $\mu \mathrm{A}$ (max) |
| $\mathrm{C}_{\text {OUT }}$ | TRI-STATE® ${ }^{\text {® }}$ Output Capacitance |  | 2 | 4 | pF (max) |
|  | Output Coding |  | Straight (Natural) Binary |  |  |

POWER SUPPLY CHARACTERISTICS

| $\mathrm{V}_{\text {A }}$ | Supply Voltage |  |  |  | 2.7 | $V$ (min) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 5.25 | V (max) |
| $\mathrm{I}_{\mathrm{A}}$ | Supply Current, Normal Mode (Operational, $\overline{\mathrm{CS}}$ low) | $\mathrm{V}_{\mathrm{A}}=+5.25 \mathrm{~V}$, | SOT-23 | 2.0 | 3.2 | mA (max) |
|  |  | $\mathrm{f}_{\text {SAMPLE }}=1 \mathrm{Msps}$ | LLP |  | 2.8 |  |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{A}}=+3.6 \mathrm{~V}, \\ & \mathrm{f}_{\text {SAMPLE }}=1 \mathrm{Msps} \end{aligned}$ | SOT-23 | 0.6 | 1.5 | mA (max) |
|  |  |  | LLP |  | 1.3 |  |
|  | Supply Current, Shutdown ( $\overline{\mathrm{CS}}$ high) | $\begin{aligned} & \mathrm{f}_{\text {SCLK }}=0 \mathrm{MHz}, \mathrm{~V}_{\mathrm{A}}=+5 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{SAMPLE}}=0 \mathrm{ksps} \end{aligned}$ |  | 500 |  | nA |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{A}}=+5 \mathrm{~V}, \mathrm{f}_{\mathrm{SCLK}}=20 \mathrm{MHz}, \\ & \mathrm{f}_{\text {SAMPLE }}=0 \mathrm{ksps} \end{aligned}$ |  | 60 |  | $\mu \mathrm{A}$ |
| $\mathrm{P}_{\mathrm{D}}$ | Power Consumption, Normal Mode (Operational, $\overline{\mathrm{CS}}$ low) | $\mathrm{V}_{\mathrm{A}}=+5 \mathrm{~V}$ | SOT-23 | 10.0 | 16 | mW (max) |
|  |  |  | LLP |  | 14 |  |
|  |  | $\mathrm{V}_{\mathrm{A}}=+3 \mathrm{~V}$ | SOT-23 | 2.0 | 4.5 | mW (max) |
|  |  |  | LLP |  | 3.9 |  |
|  | Power Consumption, Shutdown ( $\overline{\mathrm{CS}}$ high) | $\begin{aligned} & \mathrm{f}_{\text {SCLK }}=0 \mathrm{MHz}, \mathrm{~V}_{\mathrm{A}}=+5 \mathrm{~V} \\ & \mathrm{f}_{\text {SAMPLE }}=0 \mathrm{kSps} \end{aligned}$ |  | 2.5 |  | $\mu \mathrm{W}$ |
|  |  | $\begin{aligned} & \mathrm{f}_{\text {SCLK }}=20 \mathrm{MHz}, \mathrm{~V}_{\mathrm{A}}=+5 \mathrm{~V}, \\ & \mathrm{f}_{\mathrm{SAMPLE}}=0 \mathrm{ksps} \end{aligned}$ |  | 300 |  | $\mu \mathrm{W}$ |

## AC ELECTRICAL CHARACTERISTICS

| $\mathrm{f}_{\text {SCLK }}$ | Clock Frequency | (Note 8) | 10 | MHz (min) |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 20 | MHz (max) |
| $\mathrm{f}_{\text {s }}$ | Sample Rate | (Note 8) | 500 | ksps (min) |
|  |  |  | 1 | Msps (max) |
| $\mathrm{t}_{\text {conv }}$ | Conversion Time |  | 16 | SCLK cycles |

## ADC101S101 Converter Electrical Characteristics (Notes 7, 9) (Continued)

The following specifications apply for $\mathrm{V}_{\mathrm{A}}=+2.7 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{f}_{\mathrm{SCLK}}=10 \mathrm{MHz}$ to $20 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, $f_{\text {SAMPLE }}=500 \mathrm{ksps}$ to 1 Msps , unless otherwise noted. Boldface limits apply for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ : all other limits $\mathrm{T}_{\mathrm{A}}=$ $25^{\circ} \mathrm{C}$.

| Symbol | Parameter | Conditions | Typical | Limits <br> (Note 9) | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |

AC ELECTRICAL CHARACTERISTICS

| DC | SCLK Duty Cycle | $\mathrm{f}_{\text {SCLK }}=20 \mathrm{MHz}$ | 50 | 40 | \% (min) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 60 | \% (max) |
| $\mathrm{t}_{\mathrm{ACQ}}$ | Track/Hold Acquisition Time |  |  | 400 | ns (max) |
|  | Throughput Time | Acquisition Time + Conversion Time |  | 20 | SCLK cycles |
| $\mathrm{t}_{\text {QUIET }}$ | (Note 10) |  |  | 50 | ns (min) |
| $\mathrm{t}_{\mathrm{AD}}$ | Aperture Delay |  | 3 |  | ns |
| $\mathrm{t}_{\mathrm{AJ}}$ | Aperture Jitter |  | 30 |  | ps |

## ADC101S101 Timing Specifications

The following specifications apply for $\mathrm{V}_{\mathrm{A}}=+2.7 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{f}_{\mathrm{SCLK}}=10.0 \mathrm{MHz}$ to $20.0 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$, $f_{\text {SAMPLE }}=500 \mathrm{ksps}$ to 1 Msps , Boldface limits apply for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ : all other limits $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

| Symbol | Parameter | Conditions | Typical | Limits | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{cs}}$ | Minimum $\overline{\mathrm{CS}}$ Pulse Width |  |  | 10 | ns (min) |
| $\mathrm{t}_{\text {su }}$ | $\overline{\overline{C S}}$ to SCLK Setup Time |  |  | 10 | ns (min) |
| $t_{\text {EN }}$ | Delay from $\overline{\mathrm{CS}}$ Until SDATA TRI-STATE ${ }^{\circledR}$ <br> Disabled (Note 11) |  |  | 20 | ns (max) |
| $t_{\text {ACC }}$ | Data Access Time after SCLK Falling Edge (Note 12) | $\mathrm{V}_{\mathrm{A}}=+2.7$ to +3.6 |  | 40 | ns (max) |
|  |  | $\mathrm{V}_{\mathrm{A}}=+4.75$ to +5.25 |  | 20 | ns (max) |
| $\mathrm{t}_{\mathrm{CL}}$ | SCLK Low Pulse Width |  |  | $0.4 \times \mathrm{t}_{\text {scLK }}$ | ns (min) |
| $\mathrm{t}_{\mathrm{CH}}$ | SCLK High Pulse Width |  |  | $0.4 \times \mathrm{t}_{\text {scLK }}$ | ns (min) |
| $\mathrm{t}_{\mathrm{H}}$ | SCLK to Data Valid Hold Time | $\mathrm{V}_{\mathrm{A}}=+2.7$ to +3.6 |  | 7 | ns (min) |
|  |  | $\mathrm{V}_{\mathrm{A}}=+4.75$ to +5.25 |  | 5 | ns (min) |
| $t_{\text {DIS }}$ | SCLK Falling Edge to SDATA High Impedance (Note 13) | $\mathrm{V}_{\mathrm{A}}=+2.7$ to +3.6 |  | 25 | ns (max) |
|  |  |  |  | 6 | ns (min) |
|  |  | $\mathrm{V}_{\mathrm{A}}=+4.75$ to +5.25 |  | 25 | ns (max) |
|  |  |  |  | 5 | ns (min) |
| $\mathrm{t}_{\text {POWER-UP }}$ | Power-Up Time from Full Power-Down |  | 1 |  | $\mu \mathrm{s}$ |

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to $\mathrm{GND}=\mathrm{OV}$, unless otherwise specified.
Note 3: When the input voltage at any pin exceeds the power supply (that is, $\mathrm{V}_{\mathbb{I N}}<G N D$ or $\mathrm{V}_{\mathbb{I N}}>\mathrm{V}_{\mathrm{A}}$ ), the current at that pin should be limited to 10 mA . The 20 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 10 mA to two. The Absolute Maximum Rating specification does not apply to the $\mathrm{V}_{\mathrm{A}}$ pin. The current into the $\mathrm{V}_{\mathrm{A}}$ pin is limited by the Analog Supply Voltage specification.
Note 4: The absolute maximum junction temperature ( $T_{\jmath} m a x$ ) for this device is $150^{\circ} \mathrm{C}$. The maximum allowable power dissipation is dictated by $\mathrm{T}_{\mathrm{J}} \mathrm{max}$, the junction-to-ambient thermal resistance $\left(\theta_{\mathrm{JA}}\right)$, and the ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$, and can be calculated using the formula $\mathrm{P}_{\mathrm{D}} \max =\left(\mathrm{T}_{\mathrm{Jmax}}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$. The values for maximum power dissipation listed above will be reached only when the device is operated in a severe fault condition (e.g. when input or output pins are driven beyond the power supply voltages, or the power supply polarity is reversed). Obviously, such conditions should always be avoided.
Note 5: Human body model is 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor. Machine model is 220 pF discharged through zero ohms.
Note 6: Reflow temperature profiles are different for lead-free and non-lead-free packages.
Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: This is the frequency range over which the electrical performance is guaranteed. The device is functional over a wider range which is specified under Operating Ratings.
Note 9: Datasheet $\mathrm{min} / \mathrm{max}$ specification limits are guaranteed by design, test, or statistical analysis.
Note 10: Minimum Quiet Time required by bus relinquish and the start of the next conversion.
Note 11: Measured with the timing test circuit shown in Figure 1 and defined as the time taken by the output signal to cross 1.0V.
Note 12: Measured with the timing test circuit shown in Figure 1 and defined as the time taken by the output signal to cross 1.0 V or 2.0V
Note 13: $t_{\text {DIS }}$ is derived from the time taken by the outputs to change by 0.5 V with the timing test circuit shown in Figure 1 . The measured number is then adjusted to remove the effects of charging or discharging the output capacitance. This means that $t_{\mathrm{DI}}$ is the true bus relinquish time, independent of the bus loading.

Timing Diagrams


FIGURE 1. Timing Test Circuit


FIGURE 2. ADC101S101 Serial Timing Diagram

## Specification Definitions

ACQUISITION TIME is the time required to acquire the input voltage. That is, it is time required for the hold capacitor to charge up to the input voltage.
APERTURE DELAY is the time between the fourth falling SCLK edge of a conversion and the time when the input signal is acquired or held for conversion.
APERTURE JITTER (APERTURE UNCERTAINTY) is the variation in aperture delay from sample to sample. Aperture jitter manifests itself as noise in the output.
CONVERSION TIME is the time required, after the input voltage is acquired, for the ADC to convert the input voltage to a digital word.
DIFFERENTIAL NON-LINEARITY (DNL) is the measure of the maximum deviation from the ideal step size of 1 LSB.
DUTY CYCLE is the ratio of the time that a repetitive digital waveform is high to the total time of one period. The specification here refers to the SCLK.

EFFECTIVE NUMBER OF BITS (ENOB, or EFFECTIVE BITS) is another method of specifying Signal-to-Noise and Distortion or SINAD. ENOB is defined as (SINAD - 1.76) / 6.02 and says that the converter is equivalent to a perfect ADC of this (ENOB) number of bits.
FULL POWER BANDWIDTH is a measure of the frequency at which the reconstructed output fundamental drops 3 dB below its low frequency value for a full scale input.
GAIN ERROR is the deviation of the last code transition (111...110) to (111...111) from the ideal ( $\mathrm{V}_{\text {REF }}-1.5 \mathrm{LSB}$ ), after adjusting for offset error.
INTEGRAL NON-LINEARITY (INL) is a measure of the deviation of each individual code from a line drawn from negative full scale ( $1 / 2$ LSB below the first code transition) through positive full scale ( $1 / 2$ LSB above the last code transition). The deviation of any given code from this straight line is measured from the center of that code value.
INTERMODULATION DISTORTION (IMD) is the creation of additional spectral components as a result of two sinusoidal frequencies being applied to the ADC input at the same time. It is defined as the ratio of the power in the second and third
order intermodulation products to the sum of the power in both of the original frequencies. IMD is usually expressed in dB
MISSING CODES are those output codes that will never appear at the ADC outputs. The ADC101S101 is guaranteed not to have any missing codes.
OFFSET ERROR is the deviation of the first code transition (000...000) to (000...001) from the ideal (i.e. GND +0.5 LSB).
SIGNAL TO NOISE RATIO (SNR) is the ratio, expressed in dB , of the rms value of the input signal to the rms value of the sum of all other spectral components below one-half the sampling frequency, not including harmonics or d.c.
SIGNAL TO NOISE PLUS DISTORTION (S/N+D or SINAD) Is the ratio, expressed in dB , of the rms value of the input signal to the rms value of all of the other spectral components below half the clock frequency, including harmonics but excluding d.c.
SPURIOUS FREE DYNAMIC RANGE (SFDR) is the difference, expressed in dB, between the desired signal amplitude to the amplitude of the peak spurious spectral component, where a spurious spectral component is any signal present in the output spectrum that is not present at the input and may or may not be a harmonic.
TOTAL HARMONIC DISTORTION (THD) is the ratio, expressed in dB or dBc , of the rms total of the first five harmonic components at the output to the rms level of the input signal frequency as seen at the output. THD is calculated as

$$
T H D=20 \cdot \log _{10} \sqrt{\frac{\mathrm{~A}_{\mathrm{f} 2}^{2}+\ldots+\mathrm{A}_{\mathrm{f} 6}{ }^{2}}{\mathrm{~A}_{\mathrm{f} 1}{ }^{2}}}
$$

where $\mathrm{Af}_{1}$ is the RMS power of the input frequency at the output and $\mathrm{Af}_{2}$ through $\mathrm{Af}_{6}$ are the RMS power in the first 5 harmonic frequencies.
THROUGHPUT TIME is the minimum time required between the start of two successive conversion. It is the acquisition time plus the conversion time.

Typical Performance Characteristics $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\text {SAMPLE }}=500 \mathrm{ksps}$ to 1 Msps , $f_{\text {SCLK }}=10 \mathrm{MHz}$ to $20 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$ unless otherwise stated.


20145220
DNL


20145260
DNL vs Clock Frequency


INL
$\mathbf{f}_{\text {scLk }}=10 \mathrm{MHz}$


20145221
INL


20145261
INL vs Clock Frequency


Typical Performance Characteristics $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\text {sample }}=500 \mathrm{ksps}$ to 1 Msps , $\mathrm{f}_{\text {SCLK }}=10 \mathrm{MHz}$ to $20 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$ unless otherwise stated. (Continued)


20145263
SFDR vs. Clock Frequency


20145267
Spectral Response, $\mathrm{V}_{\mathrm{A}}=5.25 \mathrm{~V}$
$f_{\text {scLK }}=10 \mathrm{MHz}$


SINAD vs. Clock Frequency


20145264
THD vs. Clock Frequency


20145268
Spectral Response, $\mathrm{V}_{\mathrm{A}}=5.25 \mathrm{~V}$
$\mathbf{f}_{\text {SCLK }}=\mathbf{2 0} \mathbf{M H z}$


Typical Performance Characteristics $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\text {SAMPLE }}=500 \mathrm{ksps}$ to 1 Msps , $\mathrm{f}_{\text {scLk }}=10 \mathrm{MHz}$ to $20 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$ unless otherwise stated. (Continued)


## Applications Information

### 1.0 ADC101S101 OPERATION

The ADC101S101 is a successive-approximation analog-todigital converter designed around a charge-redistribution digital-to-analog converter core. Simplified schematics of the ADC101S101 in both track and hold operation are shown in Figures 3 and 4, respectively. In Figure 3, the device is in track mode: switch SW1 connects the sampling capacitor to the input, and SW2 balances the comparator inputs. The device is in this state until $\overline{\mathrm{CS}}$ is brought low, at which point the device moves to the hold mode.

Figure 4 shows the device in hold mode: switch SW1 connects the sampling capacitor to ground, maintaining the sampled voltage, and switch SW2 unbalances the comparator. The control logic then instructs the charge-redistribution DAC to add or subtract fixed amounts of charge from the sampling capacitor until the comparator is balanced. When the comparator is balanced, the digital word supplied to the DAC is the digital representation of the analog input voltage. The device moves from hold mode to track mode on the 13th rising edge of SCLK.


20145209
FIGURE 3. ADC101S101 in Track Mode


FIGURE 4. ADC101S101 in Hold Mode

### 2.0 USING THE ADC101S101

The serial interface timing diagram for the ADC101S101 is shown in Figure 2. $\overline{\mathrm{CS}}$ is chip select, which initiates conversions on the ADC101S101 and frames the serial data transfers. SCLK (serial clock) controls both the conversion process and the timing of serial data. SDATA is the serial data out pin, where a conversion result is found as a serial data stream.
Basic operation of the ADC101S101 begins with $\overline{\mathrm{CS}}$ going low, which initiates a conversion process and data transfer. Subsequent rising and falling edges of SCLK will be labelled with reference to the falling edge of $\overline{\mathrm{CS}}$; for example, "the third falling edge of SCLK" shall refer to the third falling edge of SCLK after $\overline{C S}$ goes low.
At the fall of $\overline{\mathrm{CS}}$, the SDATA pin comes out of TRI-STATE, and the converter moves from track mode to hold mode. The input signal is sampled and held for conversion on the falling edge of CS . The converter moves from hold mode to track
mode on the 13th rising edge of SCLK (see Figure 2). The SDATA pin will be placed back into TRI-STATE after the 16th falling edge of SCLK, or at the rising edge of $\overline{\mathrm{CS}}$, whichever occurs first. After a conversion is completed, the quiet time $\mathrm{t}_{\text {QUIET }}$ must be satisfied before bringing $\overline{\mathrm{CS}}$ low again to begin another conversion.
Sixteen SCLK cycles are required to read a complete sample from the ADC101S101. The sample bits (including leading or trailing zeroes) are clocked out on falling edges of SCLK, and are intended to be clocked in by a receiver on subsequent falling edges of SCLK. The ADC101S101 will produce three leading zero bits on SDATA, followed by ten data bits, most significant first. After the data bits, the ADC101S101 will clock out two trailing zeros.
If $\overline{\mathrm{CS}}$ goes low before the rising edge of SCLK, an additional (fourth) zero bit may be captured by the next falling edge of SCLK.

## Applications Information (Continued)

### 3.0 ADC101S101 TRANSFER FUNCTION

The output format of the ADC101S101 is straight binary. Code transitions occur midway between successive integer LSB values. The LSB width for the ADC101S101 is $\mathrm{V}_{\mathrm{A}} / 1024$. The ideal transfer characteristic is shown in Figure 5. The transition from an output code of 0000000000 to a code of 0000000001 is at $1 / 2$ LSB, or a voltage of $V_{A} / 2048$. Other code transitions occur at steps of one LSB.


FIGURE 5. Ideal Transfer Characteristic

### 4.0 TYPICAL APPLICATION CIRCUIT

A typical application of the ADC101S101 is shown in Figure 6. Power is provided in this example by the National Semiconductor LP2950 low-dropout voltage regulator, available in a variety of fixed and adjustable output voltages. The power supply pin is bypassed with a capacitor network located close to the ADC101S101. Because the reference for the ADC101S101 is the supply voltage, any noise on the supply will degrade device noise performance. To keep noise off the supply, use a dedicated linear regulator for this device, or provide sufficient decoupling from other circuitry to keep noise off the ADC101S101 supply pin. Because of the ADC101S101's low power requirements, it is also possible to use a precision reference as a power supply to maximize performance. The three-wire interface is shown connected to a microprocessor or DSP.


20145213
FIGURE 6. Typical Application Circuit

### 5.0 ANALOG INPUTS

An equivalent circuit for one of the ADC101S101's input channels is shown in Figure 7. Diodes D1 and D2 provide ESD protection for the analog inputs. At no time should any input go beyond ( $\mathrm{V}_{\mathrm{A}}+300 \mathrm{mV}$ ) or (GND - 300 mV ), as these ESD diodes will begin conducting, which could result in erratic operation.
The capacitor C1 in Figure 7 has a typical value of 4 pF , and is mainly the package pin capacitance. Resistor R1 is the on resistance of the multiplexer and track / hold switch, and is typically 500 ohms. Capacitor C2 is the ADC101S101 sampling capacitor and is typically 26 pF . The ADC101S101 will deliver best performance when driven by a low-impedance source to eliminate distortion caused by the charging of the sampling capacitance. This is especially important when using the ADC101S101 to sample AC signals. Also important when sampling dynamic signals is an anti-aliasing filter.


20145214
FIGURE 7. Equivalent Input Circuit

### 6.0 DIGITAL INPUTS AND OUTPUTS

The ADC101S101 digital inputs (SCLK and $\overline{\mathrm{CS}}$ ) are not limited by the same absolute maximum ratings as the analog inputs. The digital input pins are instead limited to +5.25 V with respect to GND, regardless of $\mathrm{V}_{\mathrm{A}}$, the supply voltage. This allows the ADC101S101 to be interfaced with a wide range of logic levels, independent of the supply voltage.

### 7.0 MODES OF OPERATION

The ADC101S101 has two possible modes of operation: normal mode, and shutdown mode. The ADC101S101 enters normal mode (and a conversion process is begun) when $\overline{\mathrm{CS}}$ is pulled low. The device will enter shutdown mode if $\overline{\mathrm{CS}}$ is pulled high before the tenth falling edge of SCLK after $\overline{C S}$ is pulled low, or will stay in normal mode if $\overline{\mathrm{CS}}$ remains low. Once in shutdown mode, the device will stay there until $\overline{\mathrm{CS}}$ is brought low again. By varying the ratio of time spent in the normal and shutdown modes, a system may trade-off throughput for power consumption, with a sample rate as low as zero.

### 7.1 Normal Mode

The fastest possible throughput is obtained by leaving the ADC101S101 in normal mode at all times, so there are no power-up delays. To keep the device in normal mode continuously, $\overline{\mathrm{CS}}$ must be kept low until after the 10th falling edge of SCLK after the start of a conversion (remember that a conversion is initiated by bringing $\overline{\mathrm{CS}}$ low).
If $\overline{C S}$ is brought high after the 10th falling edge, but before the 16th falling edge, the device will remain in normal mode, but the current conversion will be aborted, and SDATA will return to TRI-STATE (truncating the output word).

## Applications Information

(Continued)
Sixteen SCLK cycles are required to read all of a conversion word from the device. After sixteen SCLK cycles have elapsed, $\overline{\mathrm{CS}}$ may be idled either high or low until the next conversion. If $\overline{C S}$ is idled low, it must be brought high again before the start of the next conversion, which begins when $\overline{\mathrm{CS}}$ is again brought low.
After sixteen SCLK cycles, SDATA returns to TRI-STATE. Another conversion may be started, after $\mathrm{t}_{\text {QUIET }}$ has elapsed, by bringing $\overline{\mathrm{CS}}$ low again.

### 7.2 Shutdown Mode

Shutdown mode is appropriate for applications that either do not sample continuously, or it is acceptable to trade throughput for power consumption. When the ADC101S101 is in shutdown mode, all of the analog circuitry is turned off.

To enter shutdown mode, a conversion must be interrupted by bringing $\overline{\mathrm{CS}}$ back high anytime between the second and tenth falling edges of SCLK, as shown in Figure 8. Once $\overline{C S}$ has been brought high in this manner, the device will enter shutdown mode; the current conversion will be aborted and SDATA will enter TRI-STATE. If $\overline{\mathrm{CS}}$ is brought high before the second falling edge of SCLK, the device will not change mode; this is to avoid accidentally changing mode as a result of noise on the $\overline{\mathrm{CS}}$ line.

## FIGURE 9. Entering Normal Mode

To exit shutdown mode, bring $\overline{\mathrm{CS}}$ back low. Upon bringing $\overline{\mathrm{CS}}$ low, the ADC101S101 will begin powering up (power-up time is specified in the Timing Specifications table). This power-up delay results in the first conversion result being unusable. The second conversion performed after power-up, however, is valid, as shown in Figure 9.
If $\overline{\mathrm{CS}}$ is brought back high before the 10th falling edge of SCLK, the device will return to shutdown mode. This is done to avoid accidentally entering normal mode as a result of noise on the $\overline{\mathrm{CS}}$ line. To exit shutdown mode and remain in normal mode, $\overline{\mathrm{CS}}$ must be kept low until after the 10th falling edge of SCLK. The ADC101S101 will be fully powered-up after 16 SCLK cycles.

### 8.0 POWER MANAGEMENT

The ADC101S101 takes time to power-up, either after first applying $\mathrm{V}_{\mathrm{A}}$, or after returning to normal mode from shutdown mode. This corresponds to one "dummy" conversion for any SCLK frequency within the specifications in this document. After this first dummy conversion, the

ADC101S101 will perform conversions properly. Note that the $\mathrm{t}_{\text {QUIET }}$ time must still be included between the first dummy conversion and the second valid conversion.
When the $\mathrm{V}_{\mathrm{A}}$ supply is first applied, the ADC101S101 may power up in either of the two modes: normal or shutdown. As such, one dummy conversion should be performed after start-up, as described in the previous paragraph. The part may then be placed into either normal mode or the shutdown mode, as described in Sections 7.1 and 7.2.
When the ADC101S101 is operated continuously in normal mode, the maximum throughput is $\mathrm{f}_{\text {SCLK }} / 20$. Throughput may be traded for power consumption by running $f_{\text {sclk }}$ at its maximum specified rate and performing fewer conversions per unit time, raising the ADC101S101 $\overline{\mathrm{CS}}$ line after the 10th and before the 15th fall of SCLK of each conversion. A plot of typical power consumption versus throughput is shown in the Typical Performance Curves section. To calculate the power consumption for a given throughput, multiply the fraction of time spent in the normal mode by the normal mode power consumption and add the fraction of time spent in shutdown mode multiplied by the shutdown mode power

## Applications Information

consumption. Note that the curve of power consumption vs. throughput is essentially linear. This is because the power consumption in the shutdown mode is so small that it can be ignored for all practical purposes.

### 9.0 POWER SUPPLY NOISE CONSIDERATIONS

The charging of any output load capacitance requires current from the power supply, $\mathrm{V}_{\mathrm{A}}$. The current pulses required from the supply to charge the output capacitance will cause voltage variations on the supply. If these variations are large enough, they could degrade SNR and SINAD performance of the ADC. Furthermore, discharging the output capacitance when the digital output goes from a logic high to a logic
low will dump current into the die substrate, which is resistive. Load discharge currents will cause "ground bounce" noise in the substrate that will degrade noise performance if that current is large enough. The larger the output capacitance, the more current flows through the die substrate and the greater is the noise coupled into the analog channel, degrading noise performance.
To keep noise out of the power supply, keep the output load capacitance as small as practical. It is good practice to use a $100 \Omega$ series resistor at the ADC output, located as close to the ADC output pin as practical. This will limit the charge and discharge current of the output capacitance and improve noise performance.

Physical Dimensions inches (millimeters) unless otherwise noted


DIMENSIONS ARE IN MILLIMETERS


RECOMMENDED LAND PATTERN


SDB06A (Rev A)
6-Lead LLP
Order Number ADC101S101CISD or ADC101S101CISDX NS Package Number SDB06A


## Notes

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
For the most current product information visit us at www.national.com.

## LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

## BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.
Leadfree products are RoHS compliant.

| National Semiconductor | National Semiconductor | National Semiconductor | National Semiconductor |
| :---: | :---: | :---: | :---: |
| Americas Customer | Europe Customer Support Center | Asia Pacific Customer | Japan Customer Support Center |
| Support Center | Fax: +49 (0) 180-530 8586 | Support Center | Fax: 81-3-5639-7507 |
| Email: new.feedback@nsc.com | Email: europe.support@ nsc.com | Email: ap.support@nsc.com | Email: jpn.feedback@nsc.com |
| Tel: 1-800-272-9959 | Deutsch Tel: +49 (0) 6995086208 |  | Tel: 81-3-5639-7560 |
|  | English Tel: +44 (0) 8702402171 |  |  |
| www.national.com | Français Tel: +33 (0) 141918790 |  |  |

