ECE 225
Lecture 2
Semiconductor Physics Review

Prof. Kaustav Banerjee
Electrical and Computer Engineering
University of California, Santa Barbara
Outline

• Band Model
• Metal, Insulator and Semiconductor
• Electron / Hole Concentration
• Extrinsic Semiconductors
• P-N Junction
• MOS
• MOSFET

Please Review Lecture 5, ECE 122A, Fall 2014
Band Model of Solids

- Electron Energy Level

\[E_n = \frac{-Z^2 m_0 q^4}{8 \varepsilon_0^2 h^2 n^2} \]
Band Model of Solids

Pauli Exclusion Principle (PEP)

The splitting of the discrete states into two states in consistent with the Pauli exclusion principle.
Band Model of Solids

- The allowed/forbidden energy band
Band Model of Solids

- Silicon: The 14 electrons are placed into the following 3 energy levels and 5 orbitals: $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^2$
- The splitting of the 3s and 3p states of Si into the allowed and forbidden bands
Semiconductors/Metals/Insulators
Metals, Semiconductors and Insulators

- **Conduction** happens if one band is *neither empty nor full*

- Consider N sodium atoms
 - Total number of available states = $2N$
 - $1s^2 \ 2s^2 \ 2p^6 \ 3s^1$
 - N conduction electrons

- metallic
Metals, Semiconductors and Insulators

- Insulator

- Examples:
 - SiO2
 - AlN
Metals, Semiconductors and Insulators

- **insulators vs. semiconductors?**
 - Si with $E_G=1.12$ eV is a semiconductor
 - SiO$_2$ with $E_G \approx 5$ eV is an insulator

- Impurities in semiconductors are almost fully ionized at room temperatures

 Ref.: Charles Kittel, ‘Introduction to Solid State Physics’, 7th edition
Metals, Semiconductors and Insulators

- Two types of charged particles exist in a semiconductor
 - Electron
 - Hole

\[T=0K \quad T>0 \]
Electron Concentration (n) in a Bulk Semiconductor

- **two concepts**
 - Density of States (DOS)
 - Fermi-Dirac Occupation Function

- **DOS:**
 - **Definition:** \(D(E) \, dE = \# \text{ of “allowed” energy states between } E \text{ and } E+dE \text{ per unit volume} \)
 - **Expressed in** \(\text{cm}^{-3} \)
Electron Concentration in a Semiconductor

- Fermi-Dirac Occupation Function

\[f_D(E) = \frac{1}{1 + e^{\frac{-(E_F - E)}{k_B T}}} \]

- \(f_D(E) = 0.5 \) at \(E = E_F \) (\(E_F \) is the Fermi level…)

- \(f_D(E) = \) probability of occupation of a state of energy \(E \), given that such a state exists.

- Probability of a hole in a state of energy \(E \) is \((1 - f_D(E))\) (Why?)
Fermi-Dirac Function $f(E)$:

- At higher temperatures, $(E-E_F) \gg kT$
- Fermi-Dirac (FD) distribution function reduces to the Boltzmann (BZ) distribution function: $f(E) = \exp\left(-\frac{(E-E_F)}{kT}\right)$
Electron and Hole Concentrations

\[n = \int_{E_C}^{\infty} D(E) f(E) dE \]

- Integrating:
 \[n_0 = N_C e^{\frac{(E_F - E_C)}{k_B T}} \]

- Analogous expression for hole concentration:
 - (A hole is a vacant state in a band)

 \[p_0 = N_V e^{\frac{(E_V - E_F)}{k_B T}} \]

\(N_C \) and \(N_V \) are called the "effective density of states"...why?
Electron and Hole Concentrations

- Exercise: calculate n_0 for intrinsic (undoped, pure) Si at 300K
 - $N_c = 3.2 \times 10^{19}$ cm$^{-3}$
 - $E_i - E_V = 0.5506$ eV
 - $E_g = 1.11$ eV

- Result: $n_0 = 1.45 \times 10^{10}$ cm$^{-3} = p_o$
Extrinsic Semiconductors

- To increase conductivity, *doping* adds impurities to silicon crystal

- Two types of impurities:
 - *donors*
 - *Acceptors*
 - Impurities are ionized when they donate or accept an electron
N-Type Semiconductors

- **N-Type**: Large concentration of electrons in conduction band
- **Created by donor impurities**
 - One extra electron than Silicon
 - Silicon: periodic table column IV
 - Donors: periodic table column V
 - Phosphorus (P)
 - Arsenic (As)
 - Antimony (Sb)
- **Doping concentration**: \(N_D \) (atoms/cm\(^3\))
N-Type Semiconductors (2)

- Donor impurities create “donor level” in energy band diagram
P-Type Semiconductors

- **P-Type**: Large concentration of holes in valence band
- **Created by acceptor impurities**
 - Acceptors: one fewer electron than Silicon
 - Silicon: periodic table column IV
 - Acceptors: periodic table column III
 - Boron (B)
 - Aluminum (Al)
 - Gallium (Ga)
- **Doping concentration**: N_A
P-Type Semiconductors (2)

- Acceptor impurities create “acceptor level” in energy band diagram

![Energy band diagrams with acceptor levels at different temperatures](image)
Extrinsic Energy Band Diagram

- Effect of doping on Fermi level E_F
 - N-Type: Fermi level moves up
 - P-Type: Fermi level moves down

$$q \phi_F = E_F - E_i$$

ϕ_F: V
$q \phi_F$: eV
Extrinsic Semiconductor (Summary)

Electron affinity: energy to move electron from conduction band to free space

Work function: energy to move electron from Fermi level to free space
Electron Currents

- **Two types of current** in semiconductors
 - **Drift current**: Electron motion due to electric field
 - **Diffusion current**: Electron motion due to differences in carrier concentration

- Semiconductors rely on interaction between these two currents!

- Current density \(J \) is always used rather than actual current value: \(A/cm^2 \)

- **Actual current** \(I = J \cdot A \)
Drift Current

- With no electric field, there is no net motion of electrons, but each electron moves randomly....why?

- With electric field, there is net force on each electron, causing acceleration

- Acceleration causes collisions, which balance electric field

- Force on electron: \(F_x = -qE_x \)

- Average net velocity: \(\langle v_x \rangle = -\frac{q\tilde{t}}{m^*_n} E_x \)
Drift Current (2)

Given average velocity, find current density:

\[J_x = \frac{nq^2 \bar{v}}{m_n} E_x \]

Define \(\mu_n = \text{electron mobility} \): ease with which electrons drift in a material

\[\mu_n = \frac{q\bar{v}}{m_n} \]

\[J_x = qn\mu_n E_x \]

Hint: estimate the charge crossing an area \(A \) in time \(dt \): \(nq\bar{v}A dt \)

\(J_x = \text{A/cm}^2 \)

\(n = \text{electrons/cm}^3 \)

\(\mu = \text{cm}^2/\text{V-s} \)
Drift Current (3)

Therefore current density is proportional to electric field (Ohm’s Law):

\[J_x = qn \mu_n E_x \]

\[\sigma = qn \mu_n \]

\[J_x = \sigma E_x \]

\[\sigma \text{ is the conductivity of the material} \]

\[\sigma = 1/\rho, \text{ where } \rho \text{= resistivity} \]

or \(V = I.R \)

Since, \(J = I/A = E/\rho \)

And \(E = V/L \)
Drift Current Example

- Find the approximate electron current for intrinsic silicon
 - Size = 1 cm3
 - Voltage applied: 1V

- $\mu_n = 600 \text{ cm}^2/\text{V} \cdot \text{s}$
- $q = 1.6 \times 10^{19} \text{ C}$
Diffusion Current

- Diffusion is due to electron or hole concentration gradient
 - Concentration gradient = d_n/d_x or d_p/d_x
- Flux density ϕ_n, ϕ_p is rate of electron or hole flow, per unit area
 $$\phi_n = -D_n \frac{dn}{dx} \quad \phi_p = -D_p \frac{dp}{dx}$$
- D_n, D_p is diffusion coefficient
 $$J_n = qD_n \frac{dn}{dx} \quad J_p = -qD_p \frac{dp}{dx}$$
Total Current: Electrons

- **Drift:**
 - Electrons drift opposite to the electric field.
 - Drift current is in the same direction as the electric field.

- **Diffusion:**
 - Electrons diffuse in the direction of decreasing concentration.
 - Diffusion current is in opposite direction to decreasing concentration.

\[
J_n(x) = q\mu_n n(x)E(x) + qD_n \frac{dn(x)}{dx}
\]

- Drift
- Diffusion
Total Current: Holes

- **Drift:**
 - Holes drift with the electric field
 - Drift current is in the same direction as the electric field

- **Diffusion:**
 - Holes diffuse in the direction of decreasing concentration
 - Diffusion current is in the same direction as decreasing concentration

\[
J_p(x) = q\mu_p p(x)E(x) - qD_p \frac{dp(x)}{dx}
\]

- Drift
- Diffusion
Equilibrium

- At equilibrium, no current flows
- Any diffusion current must be balanced by an equal drift current, and vice-versa.
- For example (for electrons):
 \[q\mu_n n(x)E(x) = -qD_n \frac{dn(x)}{dx} \]

- Equilibrium Fermi level must be flat:
 \[\frac{dE_F}{dx} = 0 \]
P/N Junctions

- put two types of semiconductors together

- Large concentration gradient at junction
P/N Junctions (2)

- Immobile ions are left behind
- Electric field forms, from N to P
- E-field causes drift in opposite direction as diffusion
- Equilibrium No current flows
Depletion region forms around junction

“Depleted” of any mobile charges (holes or electrons)

Charge in depletion region due to fixed ions

Electric field causes a potential difference across junction: known as built-in voltage V_0
At thermal equilibrium, no net current flow

- When drift + diffusion currents = 0, \(\frac{dE_f}{dx} = 0 \)
- Bands must bend so that Fermi level is constant

\(V_0 = \) built-in voltage
The Diode

Cross-section of pn-junction in an IC process

One-dimensional representation

diode symbol

Mostly occurring as parasitic element in Digital ICs
Bias Effects on PN Junction

Equilibrium

- Smaller E field
- Smaller depletion W

Forward bias

- Larger E field
- Larger depletion W

Reverse bias

- Lower potential barrier
- h^+ diffusion

- Higher potential barrier
- e^- diffusion
MOS Structure

- **MOS**: Metal-oxide-semiconductor
 - Gate: metal (or polysilicon)
 - Oxide: silicon dioxide, grown on substrate
- **MOS capacitor**: two-terminal MOS structure

![MOS Structure Diagram]

- Gate terminal
- Metal gate (Al)
- Oxide (SiO$_2$)
- Si substrate
- Body or substrate terminal
MOS Energy Band Diagram

- **Work function** $(q\Phi_M, q\Phi_S)$: energy required to take electron from Fermi level to free space
- **Electron affinity** is the energy required to move an electron from conduction band to free space $(E_0) = q\chi_S$
- **Work function** difference between Al and Si = 0.8V

![MOS Energy Band Diagram](image-url)
MOS Energy Band Diagram

- Bands must bend for Fermi levels to line up
- Amount of bending is equal to work function difference: \(q\Phi_M - q\Phi_S \)
- Fermi levels equalized by transfer of –ve charge from materials with higher \(E_F \) (smaller work functions) across interfaces to materials with lower \(E_F \)
- Part of voltage drop occurs across oxide, rest occurs next to O-S interface

\[\Phi_F = \text{Fermi potential (difference between } E_F \text{ and } E_i \text{ in bulk)} \]
\[\Phi_S = \text{surface potential} \]
MOS Capacitor Operation

- Assume p-type substrate
- Three regions of operation
 - Accumulation ($V_G < 0$)
 - Depletion ($V_G > 0$ but small)
 - Inversion ($V_G >> 0$)
Accumulation

- **Negative voltage on gate**: attracts holes in substrate towards oxide
- Holes “accumulate” on Si surface (surface is more strongly p-type)
- Electrons pushed deeper into substrate

![Diagram of accumulation process]

\[V_G < 0 \]
\[V_B = 0 \]

\[E_{Fm}, E_{C}, E_{i}, E_{Fp}, E_{V} \]
Depletion

- Positive voltage on gate: repels holes in substrate
 - Holes leave behind negatively charged acceptor ions
- Depletion region forms: devoid of carriers
 - Electric field directed from gate to substrate
- Bands bend downwards near surface
 - Surface becomes less strongly p-type (E_F close to E_i)

\[V_G > 0 \]
\[V_B = 0 \]

![Diagram showing depletion region and band bending](image.png)
Inversion

- Increase voltage on gate, bands bend more
- Additional minority carriers (electrons) attracted from substrate to surface
 - Forms “inversion layer” of electrons
- Surface becomes n-type

P-type Si substrate

\[V_G \gg 0 \]

\[V_B = 0 \]

\[E_{ox} \]

\[qV_G \]

\[E_{Fm} \]

\[E_C \]

\[E_i \]

\[E_{Fp} \]

\[E_V \]
Inversion

Definition of inversion

- Point at which density of electrons on surface = density of holes in bulk
- Surface potential is same as ϕ_F, but different sign

Remember:

$q\phi_F = E_F - E_i$

$q\phi_s = -q\phi_F$
MOS Capacitor (Review)

(a) $V_g < 0$

(b) $0 < V_g < V_t$

(c) $V_g > V_t$

FIG 2.2 MOS structure demonstrating (a) accumulation, (b) depletion, and (c) inversion