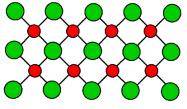
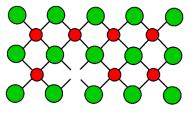

ECE 227B

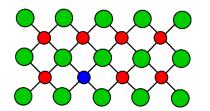
1/20/2010

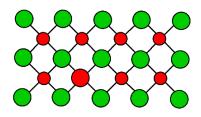
Radiative and nonradiative transitions

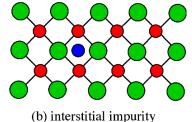

- Radiative transitions
 - Stimulated emission
 - Optical gain
 - Spontaneous emission
- Non-radiative transitions
 - Minimize in laser diodes
 - Need tools to quantify
 - Three main processes:
 - Defect
 - Surface
 - Auger

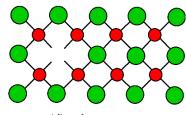


Defect and Impurity Recombination

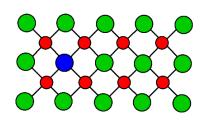

- Energy level in the middle of the gap
- Causes
 - Lattice defects (void, extra atom)
 - Dangling bonds
 - Impurities
 - Similar to dopants (but middle of the gap)
 - Oxygen (particularly bad in Al compounds)


(a) perfect lattice

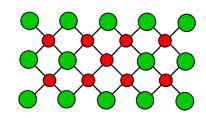

(c) cation vacancy



(e) substitution of cation



(g) B_A antisite defect



(d) anion vacancy

(f) substitution of anion

⁽h) $A_{\mathbf{R}}$ antisite defect

Shockley-Read-Hall theory

- 4 possible transition rates
- Setting the rates equal in thermal equilibrium
 - Recombination rate derived
- In Boltzman limit
 - τ_h time to capture hole (all traps full)
 - τ_e time to capture electron (all traps empty)
 - N* and P* calculated as if $E_f = E_{trap}$
 - Only deep level traps important, dominate

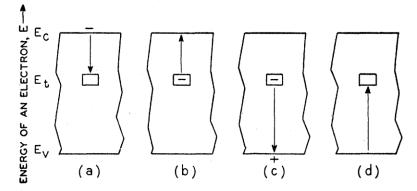
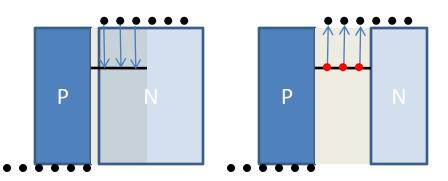


FIG. 1. The basic processes involved in recombination by trapping: (a) electron capture, (b) electron emission, (c) hole capture, (d) hole emission.

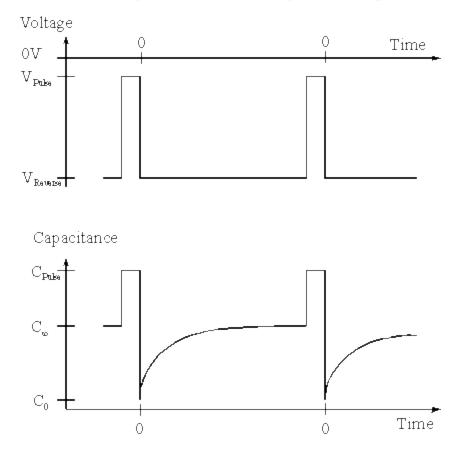
$$R_d = \frac{NP - N_i^2}{(N^* + N)\tau_h + (P^* + P)\tau_e},$$

SRH - limiting cases

$$R_d = \frac{NP - N_i^2}{(N^* + N)\tau_h + (P^* + P)\tau_e},$$


- High level injection, P=N >> N_i, N*, P* – Important for lasers $R_d = \frac{N}{\tau_b + \tau_e}$
- Low level injection, deep traps (neglect N_i, N*, P*)

$$R_d = \delta N \frac{N_0 + P_0}{N_0 \tau_h + P_0 \tau_e}$$


- In both cases $N_0 \tau$
 - Linear dependence with excess carrier density
 - Lifetime increases with increased pumping

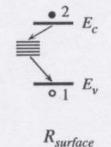
Deep level transient spectroscopy

- A typical method for evaluating deep energy levels
- Method decrease and increase reverse bias voltage
 - Measure capacitance

Standard DLTS pulse scheme and capacitance signal:

Conclusions

- Recombination problem for minority carriers
 - In heavily doped materials, majority current unaffected
 - Doping concentration
- Avoid defective/impure materials in active region
 - But cladding may be fine
- Modern growth techniques
 - -10^{16} cm⁻³ or better
 - Threshold current increase indication of impurity/leak problems

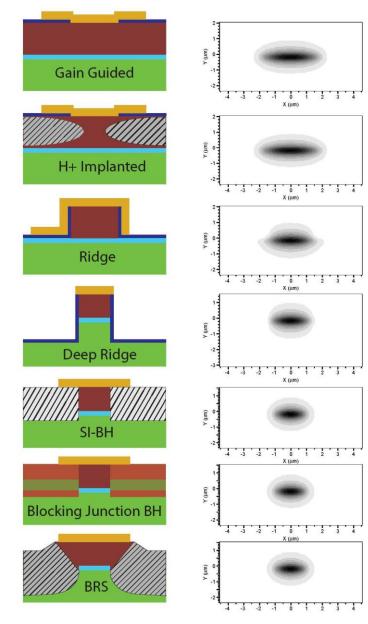

Defects and Aging of Lasers

- With aging (15-30 years in service), thermal cycles cause stress to crystal
 - Stress causes small defects to spread and grow large
 - <u>Dark line defects</u>
- Strained layer materials
 - Thick strained layers full of defects
 - Techniques for blocking defect propagation exist
 - Example GaAs/AlGaAs on Si substrate

Surface and Interface Recombination

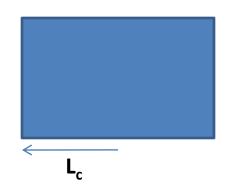
- Process analogous to defect and impurity recombination
- Cause lattice termination

Surface



Interface between two materials

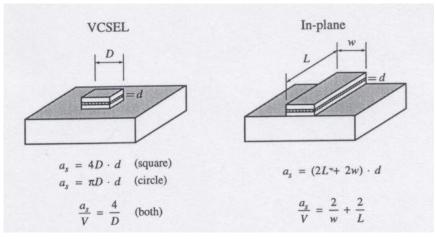
- Dangling bonds occur in very high density
 They form a miniband (not a single trap level)
- Characterized by surface (sheet) density
 - Very important process in cases where surface to volume ratio is large (VCSEL)
- Regrowth


Examples – In plane confinement

- Gain guided and implanted
 - Apertured current
- Ridge
 - Current and weak photon
- Deep ridge
 - Strong photon, current
- Buried
 - All tree confinement types

Surface and Interface Recombination

- Quantification and description accomplished via SRH theory
 - Instead of capture time, we define a capture rate, L_c/τ and capture length, L_c
 - Capture velocity
 - Larger length means larger rate


- Velocity significance
 - Maximum capture velocity is determined by average <u>thermal</u> <u>velocity</u>
 - Upper limit of 10⁷ cm/s
 - In most semiconductors, capture velocity 10x or more smaller

Surface and Interface Recombination

• From SRH theory, using capture velocities

$$R_{sr} = \frac{a_s}{V} \cdot \frac{NP - N_i^2}{N/v_h + P/v_e}$$

 First term, a_s/V, distributes exposed surface area over volume

 Again, surface recombination important for small pillar, narrow ridge cases

High injection case and current

$$R_{sr} = \frac{a_s}{V} \cdot \frac{NP - N_i^2}{N/v_h + P/v_e}$$

High level injection, P=N >> N_i

- Important for lasers

$$R_{sr} = \frac{a_s}{V} v_s N \qquad \quad \frac{1}{v_s} = \frac{1}{v_h} + \frac{1}{v_e}$$

- Surface recombination velocity is average for holes and electrons (limited by slower carriers)
- Surface recombination current is given by

$$I_{sr} = qa_s v_s N$$
 and $J_{sr} = qv_s N\left(\frac{a_s}{V}d\right)$

• Question: how to estimate carrier density?

Measurement of recombination velocity

• Low level injection $v_s \equiv \frac{V}{a_s} \cdot \frac{R_{sr}}{\delta N} = \frac{N_0 + P_0}{N_0/v_h + P_0/v_e}$

- Measured value depends on the type of doping (v_s)

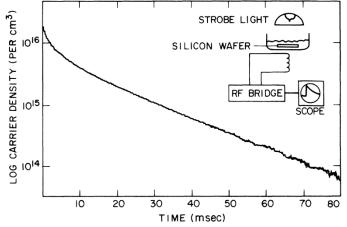
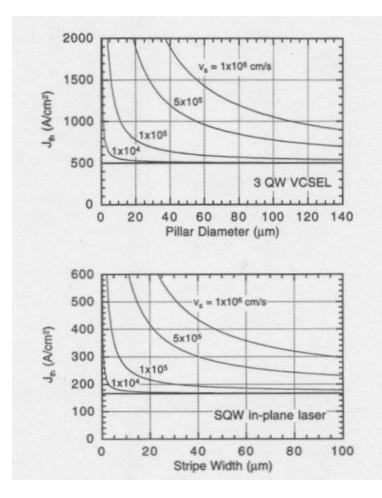
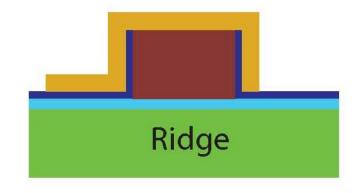



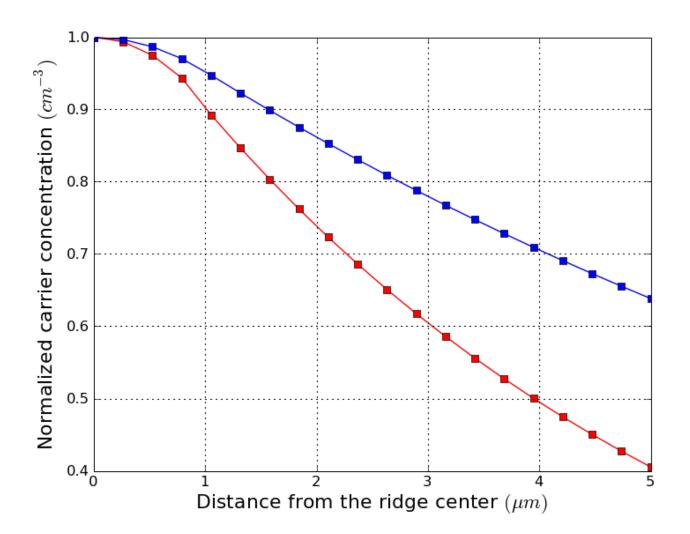
FIG. 1. Semilog plot of the carrier-density decay from a particularly long-lived 250- μ m-thick Si(111) sample immersed in HF acid.

- Threshold current measurements vs laser geometry
 - Losses vs geometry an issue


Values for common materials

- GaAs $v_s = 4-6 \ 10^5 \ cm/s$
- InGaAs $v_s = 1-2 \ 10^5 \ cm/s$
- $\ln P v_s = <10^4 \text{ cm/s}$
- Estimate on the right
 - Double VCSEL threshold for 10 um pillar
- Small VCSELs of interest
 - Option I don't etch through active
 - Option II passivate

Lateral outdiffusion


- No surface recombination
- Still, carriers escape through diffusion
- Ambipolar diffusion of carriers equivalent to surface recombination

$$v_{sD} \equiv \frac{D_{np}}{L_{np}} = \sqrt{\frac{D_{np}}{\tau_{np}}} = 1 \times 10^5 \text{ cm/s} \cdot \left[\frac{D_{np}}{20 \text{ cm}^2/\text{s}} \frac{2\mu\text{m}}{L_{np}}\right]$$

• Example

Solutions

