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Example 1.1

An InP/InGaAsP double heterostructure laser cross section consists of a 320 nm wide InGaAsP separate confinement het-
erostructure waveguide region with the bandgap corresponding to 1.3 µm (1.3Q), clad by InP on both sides�� ��Problem: 1) Determine the effective index of the fundamental transverse mode of this waveguide. 2) Determine the rate
of decay of the normalized electric field U.�� ��Solution : To solve this problem, we utilize the tools from the Appendix 3. Since the optical waveguide structure is
symmetric, we can utilize the expression (A3.14) to solve for the effective index. Then, we can compute the wave vector
component along x, kx, and the decay constant γ using equation (A3.7). From the problem statement, the refractive index
of the InGaAsP region can be found in the Table ??, nII = 3.4. For the cladding, the refractive index value at 1.55 µm is
nI = nIII = 3.17. From equation (A3.12), the normalized frequency, V is given by

V = k0d
(
n2II − n2III

) 1
2 =

2π

1.55µm
0.32µm

(
3.42 − 3.172

) 1
2 = 1.594 (1)

Using the equation (A3.14), we can compute the value of the normalized propagation parameter b,

b = 1−
ln
(

1 + V 2

2

)
V 2

2

= 1−
ln
(

1 + 1.5942

2

)
1.5942

2

= 0.354 (2)

and the effective index value,

n̄ =
(
n2IIb+ n2I (1− b)

) 1
2 =

(
3.42 · 0.354 + 3.172 · (1− 0.354)

) 1
2 = 3.253 (3)

In order to determine the minimum thickness of the top p doped cladding, we can compute the decay constant γ using
equation (A3.7), remembering that the propagation constant β = k0n̄,

γ = k0
(
n̄2 − n2I

) 1
2 =

2π

1.55µm

(
3.2532 − 3.172

) 1
2 = 2.9591µm−1 (4)

Thus, for a 1 µm thick cladding, the optical energy decays to exp (−2.9591) = 0.0027 at the top surface. We can observe
that the rate of decay is strongly dependent on the refractive index difference between the waveguide and the cladding - for
a larger difference, the field intensity outside the waveguide region decays faster. In a real laser, the active region would
probably be defined by a set of quantum wells in the center of the InGaAsP double heterostructure region. This would
complicate solving for the effective index – and this case will be treated in Chapter 6, when we talk about the perturbation
theory.�� ��End Example
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Example 1.2

InP-based 1550nm vertical cavity surface emitting lasers have been made with AlAsSb/AlGaAsSb multi-layer mirrors.�� ��Problem: Calculate the fraction of As in the AlAsSb mirror layers for lattice matching to InP.�� ��Solution :
To solve this problem, we will use the Vegard’s law. The composition of any AlAsSb alloy can be specified by value x,

where x is the percentage of As in the alloy AlSb1−xAsx. From Table ??, the lattices constants of InP, AlAs and AlSb are
aInP = 5.8688 Å, aAlAs = 5.660 Å, aAlSb = 6.1355 Å respectively. Using Vegard’s law,

aInP = xaAlAs + (1− x)aAlSb. (5)

Therefore, the fraction of As in the lattice matched mirror layer is

x =
aInP − aAlSb

aAlAs − aAlSb
= 0.56. (6)

�� ��End Example
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Example 1.3

An 80 Å wide quantum well composed of InGaAsP, lattice matched to InP with the bandgap corresponding to 1.55 µm
(1.55Q), is surrounded by a InGaAsP barrier lattice matched to InP, with the bandgap wavelength of 1.3 µm (1.3Q).�� ��Problem: Determine the energy and wavelength for photons generated in recombination between the ground states of the
quantum well at room temperature�� ��Solution : In order to solve this problem, we utilize the tools from the Appendix 1. We will determine the energy levels
of this quantum well using Eq. (A1.14). First, we need to compute the energy of the ground state for the quantum well with
infinitely high walls. Then, we need to determine the quantum numbers taking into account that the quantum well has finite
walls, using Eq. (A1.17).

As mentioned in the problem statement, both the quantum well and the barrier are lattice matched to InP. From Table
??, Ebarrier = 0.954 eV, and Ewell = 0.800 eV. In this material system, only 40 % of the band offset occurs in the conduction
band. Therefore, the quantum well barrier height in the conduction band is given by V0C = 0.4 (Ebarrier − Ewell) = 61.6 meV
and V0V = 0.6 (Ebarrier − Ewell) = 92.4 meV in the valence band.

From Eq. (A1.14), the ground state energy for a quantum well with infinite walls, E∞1c is given by

E∞1c = 3.76
m0

m

(
100Å

l

)2

meV = 3.76
1

0.045

(
100

80

)2

meV = 130.55 meV (7)

where m = mc was taken from Table ??. Similarly, for the valence band, E∞1v = 15.88 meV,with m = mHH. Now, we can

calculate nmaxfor both quantum wells using Eq. A(1.17), nmaxc =
√

V0c

E∞1c
= 0.69, and nmaxv =

√
V0v

E∞1v
= 2.41. The normalized

variable nmax, when rounded up to the nearest integer, yields the largest number of bound states possible. Either by reading
the chart in Fig. A1.4 or using Eq. (A1.18), we can calculate the lowest quantum numbers for both cases:

n1c =
2

π
arctan

[
nmaxc

(
1 + 0.6nmaxc+1

)]
= 0.49 (8)

n1v =
2

π
arctan

[
nmaxv

(
1 + 0.6nmaxv+1

)]
= 0.78 (9)

Thus, E1c = n21cE
∞
1c = 31.35 meV and E1v = n21vE

∞
1v = 9.66meV. Finally, the photon energy is given by

Ephoton = Ewell + E1c + E1v = 841.01 meV. (10)

This energy corresponds to the wavelength

λ =
1.23985eV − µm

0.84101 eV
=1.47 µm. (11)

�� ��End Example
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Example 2.1

An active-passive cleaved laser chip operating at 1.55 µm consists of a multiple quantum well InP/InGaAsP active section,
whose length is 500 µm , and internal loss αia = 15 cm−1, and a passive section whose length is 300 µm and internal loss is
αip = 10 cm−1. The active region contains 4–3 nm wide strained InGaAs quantum wells.�� ��Problem: (1) Determine the threshold modal gain of this laser. (2) Determine the mode spacing for this laser.�� ��Solution : In order to calculate the threshold modal gain, we will use the expression from Eq. ??. For this, we need to
determine the average loss of the cavity, 〈αi〉, and the mirror loss, αm. From Eq. ??,

〈αi〉 =
(αiaLa + αipLp)

La + Lp
=

23 · 10−4 · 500 + 10 · 10−4 · 300

(500 + 300)10−4cm
= 18.125 cm−1.

From Eq. ??, using the fact that we are dealing with an InP based laser with cleaved facets, where R∼0.32,

αm =
1

La + Lp
ln

(
1

R

)
=

1

800 · 10−4cm
ln

(
1

0.32

)
= 14.243 cm−1

Then, the threshold modal gain is given by Eq. ??,

Γgth = 〈αi〉+ αm = 32.368 cm−1

Cavity mode spacing can be determined from Eq. ??, using the fact that nga = ngp = 3.8 for this InGaAsP based laser, and
the lasing wavelength of 1.55µm,

∂λ =
λ2

2(n̄gaLa + n̄gpLp)
=

1.552

2(3.8 · 500 + 3.8 · 300)
µm = 0.395 nm.

�� ��End Example
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Example 2.2

The active material from Example 2.1 is used to fabricate a 500 µm long and 50 µm wide broad area laser. The material
gain for the quantum wells can be approximated using Eq. ??, with g0N = 1207.29 cm−1 and Ntr = 1.2284 · 1018 cm−3. The
transverse confinement factor Γ1 is 1% per well.�� ��Problem: (1) Calculate the threshold modal gain for this laser (2) Determine the threshold current for this laser (3)
Determine the threshold current for a laser of same dimensions but with 7 quantum wells, assuming that the internal modal
loss αia remains the same�� ��Solution : In order to calculate the threshold current, we first need to calculate the threshold carrier density using the
Eq. ??. Since we are dealing with a long wavelength InP/InGaAsP material system, both spontaneous, Eq. ?? and non-
radiative, Eq. ?? threshold current components need to be included. To compute the threshold carrier density, we need to
determine the threshold modal gain of this all active laser,

Γgth = 〈αia〉+
1

L
ln

(
1

R

)
= 37.79 cm−1.

The transverse confinement factor is determined by the number of quantum wells,

Γ = Nw · Γ1 = 4 · 0.01 = 0.04.

Using Eq. ??, threshold carrier density is

Nth = Ntre
gth
g0N = Ntre

37.79
0.04·1207.29 = 2.6865 · 1018 cm−3.

Now we can compute the threshold current, using the volume of the active region V = L·W ·Nw·a = 500·50·4·0.003·10−12cm−3,

Ith =
qV Nth
ηiτ

∼=
qV

ηi
(BN2

th + CN3
th) = 47.94 mA

where B = 0.3 · 10−10cm3/s and C = 3 · 10−29cm6/s. If we now have a laser with 7 quantum wells, the confinement factor
will be changed,

Γ2 = Nw · Γ1 = 0.07.

leading to a changed threshold gain gth2 = 539.84cm−1, threshold carrier density Nth2 = 1.9211 · 1018 cm−3, volume
V = 500 · 50 · 7 · 0.003 · 10−12 cm−3, and the threshold current of

Ith =
qV

ηi
(BN2

th + CN3
th) = 34.00 mA.

�� ��End Example
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Example 2.3

A cleaved facet, active 3 µm wide and 500 µm ridge laser is created from the laser structure from Example 2.1. This ridge
laser is biased 30mAabove threshold and directly modulated by applying a small signal sine wave current to its active section.�� ��Problem: 1) Determine the resonance peak frequency fR = ωR

2π of this laser, assuming injection efficiency ηi of 80%, and
assuming no change in the internal losses.�� ��Solution : To calculate the resonance frequency, we will use the Eq. ??. Therefore, we need to compute the differential
gain a at threshold, since the carrier density is clamped at the threshold carrier density. This, we first need to determine the
threshold carrier density. Since the internal losses are unchanged, the threshold modal gain for this laser is the same as that
for the laser in Example 2.2, Γgth = 37.79 cm−1, leading to the same threshold carrier density as calculated in Example 2.2,

Nth = Ntre
gth
g0N = Ntre

37.79
0.04·1207.29 = 2.6865 · 1018 cm−3.

Differential gain a can be computed using expression Eq. ??,

a =
∂g

∂N
|N=Nth

=
g0N
Nth

=
1207.29cm−1

2.6865 · 1018cm−3
= 4.49 · 10−16 cm2.

The resonance frequency is given by fR = ωR

2π , where ωR is defined in Eq. ??,

fR =
1

2π

[
Γvga

qV
ηi(I − Ith)

]1/2
=

[
Γ1vga

qV1
ηi(I − Ith)

]1/2
.

V1 is the volume of a single quantum well, V1 = 3 · 500 · 0.003 · 10−12cm−3 = 4.5 · 10−12 cm−3, and the group velocity for
InGaAsP laser is vg = c

3.8 = 0.7894 · 1010 cm/s. Therefore, the resonance frequency is

fR =
1

2π

[
0.01 · 0.7894 · 1010 · 4.49 · 10−16cm2

1.6 · 10−19 · 4.5 · 10−12
0.8(0.3)

1

s2

]1/2
= 17.30 GHz.

�� ��End Example
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Example 2.4

To characterize the active material from Example 2.1, a 50 µm wide and 500 µm long broad area laser is cleaved from
the wafer. Its pulsed threshold current is 47.94 mA , and differential efficiency from both facets 48.24% This laser is then
recleaved into two 250 µm long lasers, having a pulsed threshold current of 59.44 mA , and differential efficiency of 60.19 %.�� ��Problem: (1) What is the injection efficiency ηi (2) What is the average internal modal loss? (3) Determine Jtr and g0 in

the gain vs current density characteristic for each quantum well, assuming J = Jtre
g
g0�� ��Solution : To calculate the injection efficiency ηi and the internal modal loss 〈αi〉, we will use the Eq. ??. Once the modal

loss is known, and knowing the threshold current densities in the active region, we can construct the modal gain Γg versus
current J density curve. Since the confinement factor is known, we can determine the basic material gain g versus current
density J for this active material using the equation. From Eq. ??,

〈αi〉 =
η′d − ηd

Lηd − L′η′d
ln

(
1

R

)
=

(0.6019− 0.4824) ln
(

1
0.32

)
0.05 · 0.4824− 0.025 · 0.6019

) = 15 cm−1

and

ηi = ηdη
′
d

L− L′

Lηd − L′η′d
= 0.6019 · 0.4824

0.025cm−1

0.0091
= 0.80

For the gain versus current density characteristic, we utilize two data points from two different lasers:

Jth1 =
ηiIth1
w · L1

=
0.8 · 47.94mA

500 · 50 · 10−8cm2
= 153.41 A/cm2 (12)

Jth2 =
ηiIth2
w · L2

=
0.8 · 59.44mA

250 · 50 · 10−8cm2
= 380.42 A/cm2 (13)

Threshold modal gain Γgth1 for the 500 µm cavity was calculated in Example 2.2 to be 37.79cm−1. Similarly, for the 250 µm
long cavity, the threshold modal gain is Γgth1 = 60.58cm−1, where Γ = 0.04 as discussed in the Example 2.2. From Eq. ??,

g0 =
gth1 − gth2
lnJth1

Jth2

=
944.71− 1514.43cm−1

ln 153.41
380.42

= 627cm−1 (14)

Jtr =
Jth1

exp gth1

g0

=
153.41A/cm2

exp 944.71
627

= 34 A/cm2 (15)

�� ��End Example
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Example 2.5

Another batch of lasers similar to those from Example 2.3 is made, but this time, the laser contacts exhibit large series
resistance, and thus significant amount of heating under CW operation. Consider a 250 µm long, 3 µm wide all-active ridge
laser, which can be modeled by a 50 Ω series resistance and an ideal diode with an ideality factor of 3. The InP substrate is
100 µm thick and 500 µm wide, and it is bonded to a good heat sink. The characteristic temperature for threshold current
is T0 = 25 K and that for differential efficiency is Tη = 110 K. Pulsed threshold current is 15 mA and differential efficiency
48.24%.�� ��Problem: (1) What is the thermal impedance (2) What is the new CW threshold current (3) At a bias of 50 mA, what is
the power out and the temperature rise of the active region?�� ��Solution : Thermal impedance can be calculated using Eq. ??,

ZT =
ln(4h/w)

πξl
=

ln 4·100
3

π · 0.6 · 25010−4
= 103.78 ◦C/W

In order to find the new threshold current, we will need to iterate, given that the temperature increase depends on the new
threshold current, which in turn is determined by the temperature increase. At threshold, the output power from the laser
can be neglected, therefore, the dissipated power is equal to the input power,

Pd = Pin = I2th ·Rs + I · Vd.

where Vd is the ideal diode voltage, and is approximately 0.88V for InGaAsP/InP. Assuming that the threshold current
increase due to heating is 1mA, Ith = 16 mA, the dissipated power and temperature increase are

Pd = (0.016)2 · 50 + (0.016)(0.88)mW = 26.88 mW

∆T = PdZT = 0.02688 · 103.78◦C = 2.79 ◦C

To check, we plug in the value for ∆T to calculate the threshold current based on known T0 = 25 K,

I
′

th(∆T = 2.79◦C) = 15mA · exp
2.79

25
= 16.77 mA.

Thus, we conclude that we have underestimated the heating effects, and we use I
′

th to calculate the dissipated power and
repeat the process. After a couple of iterations, we end up with the final value for Ith,

Ith = 16.9 mA.

To calculate the output power for the bias current of I = 50 mA, we do the following: assuming that the output power is
negligible, we calculate the dissipated power, the temperature increase, and then the increase in the threshold temperature
and the decrease in the differential efficiency. At that point, we can compute the output power. To iterate, we reduce the
dissipated power by the output power value, and repeat the process. After a couple of steps, the process converges.

Pd u Pin = (0.05)2 · 50 + (0.05)(0.88)mW = 169.00 mW

∆T = PdZT = 0.169 · 103.78◦C = 17.54 ◦C

The threshold current and the differential efficiency with this much temperature increase are given by

I
′

th = 15mA · exp
17.54

25
= 30.25 mA

η
′

d = 0.4824 · exp
−17.54

110
= 0.4113.

The output power is given by

Po =
hν

q
η
′

d(I − Ith
′
) = 0.8 · 0.4113(50− 30.25)mW = 6.49 mW.

Reducing the dissipated power by Po yields ∆T = 16.87 ◦C and Po = 6.80 mW. Repeating the process yields the final values
of

∆T = 16.83 ◦C

Po = 6.82 mW

The L-I characteristic of this laser is illustrated in Figure ??.�� ��End Example
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Example 3.1

A dielectric transmission line with an air interface is shown in Fig. ??�� ��Problem: Write T matrix parameters for this two port.�� ��Solution : To illustrate the usefulness of T matrix formalism, we will solve this problem by multiplying the T matrices
corresponding to the building blocks of this structure. For the dielectric transmission line, the T matrix is given by

T1 =

[
ejφ1 0

0 ejφ1

]
,

where φ1 = β1L1. For the dielectric/air interface, we have

T2 =
1

t12

[
1 r12
r12 1

]
,

where r12 = n1−n2

n1+n2
, and r212 + t212 = 1. Finally, the air segment can be described by the same matrix as the one for the

dielectric segment, T3 = T1, except that φ2 = β1L1 in this case.
To get the full T matrix of the system, we need to multiply through the matrices corresponding to the individual segments,

T = T1 · T2 · T3 =

[
ejφ1 0

0 ejφ1

]
· 1

t12

[
1 r12
r12 1

]
·
[
ejφ2 0

0 ejφ2

]
=

1

t12

[
ej(φ1+φ2) r12e

j(φ1−φ2)

r12e
j(φ2−φ1) e−j(φ1+φ2)

]
.

The T matrix can be converted to an S matrix using the relationships between corresponding elements described in Table ??.
This exercise will be useful when we start dealing with periodic grating sections and DFB lasers later in this Chapter.�� ��End Example
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Example 3.2

A 980 nm bottom-emitting VCSEL must be designed. The average internal losses and the internal efficiency are 20 cm−1

and 0.9, respectively. The mirrors are composed of quarter wave stacks of AlAs/GaAs. The top mirror needs to have a power
reflection of 99.6% including air interface, and the bottom (output) mirror needs to have a power reflection of 98.4%. The
cavity between the DBR mirrors has to be one optical wavelength in the material thick, and it consists of 3 InGaAs quantum
wells, each 8 nm thick separated by 2–8 nm thick GaAs barriers, and clad on each side by another 8 nm thick layer of GaAs.
The rest of the cavity is composed of AlGaAs with 20% Al. The mirrors begin with an AlAs quarter wave layer next to the
cavity. The quantum wells are centered between the mirrors for best confinement factor.�� ��Problem: (a) Determine the thickness of the two AlGaAs spacer layers (b) Determine the number of the AlAs/GaAs
periods in the top and bottom DBR mirrors (c) What is the differential efficiency measured out of the bottom (output) DBR
mirror?�� ��Solution : From the statement of the problem, we know that the cavity length is equal to one optical wavelength in the
material, Σnili = λ. From Table ??, we have nAlAs = 2.95, nGaAs = 3.52, nAlGaAs(0.2) = 3.39 and nInGaAs = 3.60. Therefore,

3(3.60)8nm + 4(3.52)8nm + 2(3.39)s = 980nm => s = 115.2 nm

For the bottom mirror, the mirror ends with the semiconductor substrate interface. Since the mirror begins with an AlAs
layer, and ends with GaAs, there has to be an odd number of half periods in the mirror. Using Eq. ??, we have

rg =
1−

(
n1

n2

2m
)

1 +
(
n1

n2

2m
) =>

n1
n2

2m
=

1− rg
1 + rg

.

From here, we can calculate the number of periods, m, as

m =
ln
(

1−rg
1+rg

)
2 ln n1

n2

=
ln
(

1−
√
0.984

1+
√
0.984

)
2 ln

(
2.95
3.52

) = 15.6

The closest half integer is m = 15.5. For the top mirror, we apply the same procedure, except that this time we have an air
interface at the end, and again an odd number of half periods of the mirror,

rg =
1−

(
n1

n2

2m
)

1
n2

1 +
(
n1

n2

2m
)

1
n2

=> m =
lnn2

1−rg
1+rg

2 ln n1

n2

Plugging in the parameter values, we have

m =
ln 3.52 · 1−

√
0.996

1+
√
0.996

2 ln 2.95
3.52

= 15.98

Since m must be a half-integer, we need to select either 15.5 or 16.5. As we are designing a bottom emitter, we will select
m = 16.5. To compute the differential efficiency through the bottom mirror, given by Eq. ??, since we already know the
injection efficiency, internal loss and mirror loss, we need to determine the cavity length LDBR and the fraction of the output
power F2. This problem lends itself to using the effective DBR mirror model.

LDBR = Lcavity + 2Leff = 230nm + 56nm + 2
980nm

40.57
= 1146 nm

where, we have used the approximation of Eq. ?? to compute Leff for a large index contrast value. To compute F2, we use
Equations ?? and ??,

F2 =
(1− |r′g|2)e−αiLeff

(1− |r′g|2) +
|r′g|
r1

(1− r21)
= 0.8.

Differential efficiency through the back mirror is then given by (Eq. ??),

ηd = F2ηi
Tm

Tm +Ai
= 0.9 · 0.8

ln 1√
0.9960.984

114610−420 + ln 1√
0.9960.984

= 0.581.

�� ��End Example
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Example 3.3

A InGaAsP/InP tunable 1.55 µm DBR laser, as illustrated in Figure ?? is constructed. The length of the gain, phase and
DBR sections are 300 µm , 100 µm and 100 µm respectively. Average transverse-lateral internal losses in the gain and phase
sections are 15 cm−1 and 5 cm−1 respectively and the injection efficiency is 0.8. The DBR power reflectivity is |rg|2 = 0.2
and its power transmission is |tg|2 = 0.7. The other end is a simple cleaved facet. Assume the modal index of n̄ = 3.4 for
the entire structure.�� ��Problem: (1) Determine differential efficiencies out of each of two ends? (2)Determine the mode spacing, neglecting the
change in DBR penetration depth with wavelength (3) If the modal index of the DBR section is tuned by 0.01, by how much
is the new lasing mode shifted from the original lasing wavelength?�� ��Solution : Since the DBR laser in this problem is described using reflection and transmission scattering parameters, we
will use case (a) from Section ?? to solve it. To determine the differential efficiencies from both ends, we first need to
calculate the fractions of the power coming out of both ends, F1 and F2. Assuming the cleaved facet introduces no losses,
|t1|2 = 1− |r1|2 = 0.68. From Eq. ??,

F1 =
t21

(1− r21) +
r1
|rg|

(1− |rg|2)
=

0.68

0.68 +

√
0.32

0.2
(1− 0.2)

= 0.4019 (16)

F2 =
t2g

(1− r2g) +
|rg|
r1

(1− |r1|2)

=
0.7

(1− 0.2) +

√
0.2

0.32
(1− .32)

= 0.5233 (17)

The mirror loss is given by Eq. ??,

αm =
1

La + Lp
ln

[
1

r1|rg|

]
=

1

0.04cm
ln

1√
0.320.2

= 34.36 cm−1

Average passive loss, 〈αi〉 is given by

〈αi〉a+p =
〈αia〉La + 〈αip〉Lp

La + Lp
=

300 · 15cm−1 + 100 · 5cm−1

400
= 12.5 cm−1

Differential efficiencies are now given from Eq. ??,

ηd1 = F1ηi
αm

〈αi〉a+p + αm
= 0.4019

34.36

34.36 + 12.5
0.8 = 0.236 (18)

ηd2 = F2ηi
αm

〈αi〉a+p + αm
= 0.5233

34.36

34.36 + 12.5
0.8 = 0.307 (19)

To calculate the mode spacing, we need to take into account the effective length of the DBR mirror. The mode spacing is
given by Eq. ??, and for a weakly reflecting grating, we assume Leff ≈ 1

2LDBR = 50 nm.

δλ =
λ2

2(n̄gaLa + n̄gpLp + n̄gpLeff )
=

(1550nm)2

2(3.8)(300 + 100 + 50µm)
= 0.702nm

When the DBR mirror section is tuned, two effects come into play. First, the grating Bragg wavelength will change, due to the
changed grating index. Then, the cavity mode comb position will change as well, because the effective optical cavity length
is now different. For the modal index change of ∆n̄DBR, the center wavelength of the grating moves in direct proportion to
the index according to Eq. ??,

∆λg = λg
∆n̄DBR
n̄DBR

= 1550
0.01

3.4
nm = 4.56 nm.

At the same time, the cavity modes will shift, and we can use the Eq. ?? to determine the amount of shift,

∆λm =
∆n̄DBRLeff

n̄gaLa + n̄gpLp + n̄gDBRLeff
= ∆λg

Leff
La + Lp + Leff

= 4.56
50

450
nm = 0.507 nm

Finally, the new lasing mode will be the cavity mode that is the closest to the new Bragg wavelength. To compute it, we
need to compute by how many cavity modes the Bragg wavelength shifted.

∆λlasing = ∆λm + ‖∆λg −∆λm
δλ

‖δλ = 0.507nm + 6 · 0.702nm = 4.719 nm.

�� ��End Example
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Example 3.4

An InGaAsP/InP 1550 nm quarter wave shifted multiple quantum well buried heterostructure DFB laser was fabricated from
a structure whose confinement factor is Γ = 0.06. The injection efficiency for this structure was determined to be ηi = 75%,
and the internal loss αia = 10 cm−1. The grating coupling constant is κ = 20 cm−1, the average effective index of the
waveguide is 3.21, and the laser length is 500 µm . The laser facets are AR coated.�� ��Problem: (1) Determine the threshold modal gain of this laser (2) Determine the differential efficiency for this laser (3)
Determine the lasing wavelength of this laser (4) Determine the threshold modal gain, differential efficiency and the lasing
wavelength for a HR-AR standard DFB laser with the same parameters, assuming optimal HR mirror phase.�� ��Solution : To solve this problem, we need to use Figure ?? (b), which provides us with normalized solutions for the
quarter wave shifted DFB mirror loss versus wavelength detuning, in function of the grating length and coupling coefficient.
From the problem formulation, κLg = 500 · 20 · 10−4 = 1.0. Using the chart for κLg = 1.0,

A = (Γgth − 〈αi〉)Lg = 3.1 => Γgth =
3.1

Lg
+ 〈αi〉 =

3.1

500 · 10−4
cm−1 + 10cm−1 = 72 cm−1.

For a DFB laser, the differential efficiency is given by

ηd = ηi
A

ΓgthLg
= 0.75

3.1

72 · 0.05
= 0.646,

where half of the power would be emitted from each end of the grating, yielding a single sided differential efficiency of
ηd = 0.323. In a quarter-wave shifted DFB laser, the detuning of the lasing wavelength from the Bragg wavelength is zero
(as seen from the chart in Figure ?? (b)), so the lasing wavelength is 1550 nm.

For the HR-AR coated DFB laser, we now need to use the chart from Figure ?? (b). We follow the same procedure.
Using the chart for κLg = 1.0,

A = (Γgth − 〈αi〉)Lg = 1.2 => Γgth =
1.2

Lg
+ 〈αi〉 =

1.2

500 · 10−4
cm−1 + 10cm−1 = 34 cm−1.

ηd = ηi
A

ΓgthLg
= 0.75

1.2

34 · 0.05
= 0.529,

where in this case, nearly all of the power is coming out of the AR coated facet.
Using the normalized plot of threshold modal gain and wavelength from Fig. ??, the normalized detuning for the lasing

mode is δLg = 0.35, therefore the lasing wavelength is

β =
2π

λ
n̄ =

2π

λ0
n̄+

δLg
Lg

=> λ =
2πn̄

2π
λ0
n̄+

δLg

Lg

=
2π

0.013 + 0.0000007
nm = 1551.087 nm

�� ��End Example
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Example 3.5

Two DFB lasers from Example 3.4, quarter wave shifted and HR-AR coated are operating at 4 times their respective threshold
currents. Assume that the value of βsp = 1.25 · 10−5 and ηr = 0.8.�� ��Problem: Determine the side mode suppression ratio for both laser types�� ��Solution : To determine the side more suppression ratio, we need to calculate the differences between modal gains and
mirror losses for the two adjacent DFB modes, and use the following equation (which neglects the gain change ∆g, between
the two modes,

MSR = 10 log
F1(λ0)αm(λ0)

F1(λ1)αm(λ1)

[
∆α

δG
+ 1

]
In the case of a quarter wave shifted DFB laser, exactly half of the output power will come out of each facet, and this will
not be wavelength dependent. Therefore, F1(λ0) = F1(λ1) = 0.5. From Fig. ?? (b), for the mode +1 and κLg = 1.0, the
normalized mirror loss is

A+1 = (Γgth − 〈αi〉)Lg = 4.4

From Example 3.3, we have the value for this same parameter for the fundamental mode, A0 = 3.1. We compute δG for the
fundamental mode, using the Eq. ??,

δG = (αi + αm)βspηr
Ith

(I − Ith)
= (10 +

3.1

500 · 10−4
)cm−110−5

Ith
4Ith − Ith

= 72 · 10−5 · 1

3
cm−1 == 24 · 10−5 cm−1.

Finally, the MSR is given by

MSR = 10 log
1 ·A0/Lg
1 ·A1/Lg

[
A1−A0

Lg

δG
+ 1

]
= 10 log

3.1

4.4

[
26

24 · 10−5
+ 1

]
= 48.82 dB

We note that this is a very large value. For the HR-AR coated laser, we can assume that all the output power will be coming
out of one facet, and that there is no wavelength dependence in this behavior. Therefore, F1(λ0) = F1(λ1) = 1.0. From
Fig. ?? (b), and Example 3.3, we have A+1 = (Γgth − 〈αi〉)Lg = 1.8 and A0 = 1.2. This yields a δG of

δG = (αi + αm)βspηr
Ith

(I − Ith)
= (10 +

1.2

500 · 10−4
)cm−110−5

Ith
4Ith − Ith

= 34 · 10−5 · 1

3
cm−1 == 11.33 · 10−5 cm−1.

Therefore, the MSR can be calculated as

MSR = 10 log
1 ·A0/Lg
1 ·A1/Lg

[
A1−A0

Lg

δG
+ 1

]
= 10 log

1.2

1.8

[
12

11.33 · 10−5
+ 1

]
= 48.49 dB.

�� ��End Example
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