
Example 4.1

In a semiconductor optical amplifier, the TE and the TM mode gains are found to be the same for a particular wavelength of
incident light with sufficient current applied. Considering only C-HH1 transition in a 8 nmwide unstrained GaAs quantum
well surrounded by the 20 % Al-AlGaAs barriers, having the lowest transition wavelength of 840 nm.�� ��Problem: What in-plane k-vector and wavelength would satisfy the equal TE and TM gain condition?�� ��Solution : To solve this problem, we need to utilize the material from Appendix 10, and we need to recall that the
polarization dependence in the gain of the quantum wells comes from the matrix element MT . From Figure A10.XXX, which
applies for this material system, at the bottom of the first subband, for kt = 0, all of the gain is going to the TE polarized
photons. If we can tailor the value of the in-plane k-vector kt, we can achieve the conditions under which the values of
the matrix elements for TE and TM polarization will be the same. From Figure A10.XXX, this condition is fulfilled for

kt = 0.03Å
−1

, in which case ∣∣∣∣MT

M

∣∣∣∣2
TE

=

∣∣∣∣MT

M

∣∣∣∣2
TM

= 0.21. (1)

The transition energy is equal to the bandgap energy, plus kinetic energies of electrons and holes, as expressed by Eq. ??.
Therefore,

∆Et =
~2k2t
2mc

+
~2k2t
2mv

=
~2k2t
2mr

. (2)

Using values from Table XXX, we can compute the reduced mass as mr =
mcmv

mc +mv
=

0.067 · 0.38

0.067 + 0.38
m0 = 0.057 ·m0. From

there, ∆Et = 5.98 · 10−2eV. Finally, the wavelength can be obtained from the relationship

∆λ

λ
= −∆E

Eg
, (3)

where Eg corresponds to the transition wavelength of λ = 840nm. From here, we have

∆λ = − λ
E

∆E = − 840nm

1.24/0.840eV
· 5.98 · 10−2eV = 34nm (4)

and λ = 840− 34nm = 806nm.�� ��End Example

Example 4.2

An optical probe beam is transmitted through an AR-coated GaAs epi-wafer normal to the surface to measure the absorption
properties of an active region that lies in the plane of the wafer. The active region contains a single strained InGaAs quantum
well, 8 nm in thickness within a GaAs/AlGaAs waveguide, with the confinement factor of 0.015. The probe beam has a
wavelength of 970 nm, and the lowest energy level in the quantum well provides an absorption edge at 980 nm. It is determined
that the one-pass absorption of the probe beam through the unpumped quantum well is 1.5 %. Also, the threshold modal
gain of a 3 µm wide, 500 µm long ridge laser made in this material is 29.8 cm−1.�� ��Problem: (1) What is the maximum material gain at 970 nm for a very strongly pumped active region? (2) What is the
Fermi function difference (f2 − f1) at the lasing threshold?�� ��Solution : From the transmission measurements, we have that the single pass absorption is 1.5 %. That is,

Pout
Pin

= egmaxd,

where d is the thickness of the well. From here, maximum gain is

gmax =
0.015

8 · 10−7cm
= 1.875 · 104cm−1.

To calculate the Fermi function difference (f2 − f1), we utilize the relationship for gain ??,

g = gmax(f2 − f1).

Therefore, we need to calculate the threshold gain, which can be obtained from the parameters given in the problem,

gth =
Γg

Γ
=

29.8

0.015
= 1986.67cm−1. (5)
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Finally,

(f2 − f1) =
gth
gmax

=
1986.67

18750
= 0.106.�� ��End Example

Example 4.3

For the ridge lasers from Example XXX, we would like to know the ratio of the spontaneous emission power to the output
power at 40 mA bias. Assume that the value of the population inversion factor nsp = 1.5.�� ��Problem: (1) Calculate the spontaneous emission power into the mode above threshold (2) Calculate the optical mode
density for this laser (3) What is the total spontaneous emission power within a 1 nm bandwidth near the lasing wavelength?�� ��Solution : The spontaneous emission power into a mode can be calculated from the known spontaneous emission rate,
active region confinement factor Γ and photon energy. The spontaneous emission rate into a mode is given by Eq. ??. From
here, we have

Psp = Rsp · (hν) · V =
Γgthvgnsp

V
· (hν) · V = (29.8cm−1)(

3

4.5
· 1010

cm

s
)(1.5)(

1.24eV · µm

0.97µm
)(1.6 · 10−19)

J

eV
= 61.0nW. (6)

To determine the total spontaneous emission power in a given wavelength range, we need know the total spontaneous emission
rate over all modes that exist in that wavelength range, as well as the photon energy and the active region volume.

The total spontaneous emission per unit energy and per unit volume is given by Eq. ?? as R21
sp =

1

h
ρ0(ν21) · vgnspḡ21. To

compute it, we need to compute the mode density ρ0 and the average gain ḡ21. From Appendix 4, the expression for the
density of optical modes is given by Eq. ??,

ρ0(ν) =
8π

c3
n2ngν

2 =>
1

h
ρ0(ν) =

8π

(3 · 1010cm/s)3

(3.6)2(4.5)(
1.24eVµm

0.97µm
)2

(
6.626 · 10−34Js

1.6 · 10−19J/eV
)3

= 1.25 · 1015eV−1cm−3. (7)

The average gain is given by

ḡ21 =
1

3
(2g21TE + gT21M) =

2

3
g21TE =

2

3
1986.67cm−1 = 1324cm−1. (8)

Now, we can calculate the total spontaneous emission rate per unit volume as

R21
sp = (

1

h
ρ0(ν21)) · (vg)(nsp)(ḡ21) = (1.25 · 1015eV−1cm−3)(

3

4.5
· 1010

cm

s
)(1.5)(1324cm−1) = 1.65 · 1028eV−1cm−3s−1. (9)

In order to calculate the total power in the 1 nm bandwidth, we need to convert the bandwidth into energy, and calculate
the active region volume,

∆E = ∆λ
dE

dλ
= ∆λ(−Ep

λp
) = 1nm(− 1.24eVµm

(0.97µm)2
) = 1.32 · 10−3eV (10)

Va = w · d · L = (3µm)(8nm)(500µm) = 12000 · 10−15cm3. (11)

Finally, the total spontaneous power emitted in the 1 nm wavelength range around the lasing wavelength is

Psptotal = Rsp
21 ·∆E · hν · Va = (1.25 · 1015eV−1cm−3)(1.32 · 10−3eV)(

1.24eVµm

0.97µm
)(12000 · 10−15cm−3) = 53.5µW. (12)

�� ��End Example

Example 4.4

The surface recombination velocity can be estimated using the simple ”broad-area” (i.e., infinite stripe width) threshold
carrier density, however, in reality the carrier density profile will vary over the cross section of the active region, particularly
when the active width is narrow. In this problem, the effects of a finite diffusion constant for carriers in the active region
will be examined. Assume that the carrier densities in the active region are high enough that any differences in the diffusion
profiles of electrons and holes will set up an electric field which will pull the two densities to nearly the same profile. In this
ambipolar diffusion limit, the hole diffusion rate is enhanced by a factor of ∼ 2 by the forward pull of the electrons, and the
electron diffusion rate is limited to approximately twice the normal hole diffusion rate by the backward pull of the holes.
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The overall effect is that we can assume the electron and hole densities are equal everywhere in the active region and are
characterized by a single ambipolar diffusion constant, Dnp. The lateral profile of carriers is then governed by the simple
diffusion equation:

Dnp
d2N(x)

dx2
= −I(x)

qV
+
N(x)

τnp
. (13)

The carrier lifetime is in general a function of N , however, to obtain analytic solutions, we can evaluate the lifetime at the
broad-area threshold value, τnp|th = qLzNth/Jth. The problem we wish to solve is the carrier density profile across the
width of the active region in the in-plane laser depicted in Fig. ??. For this case, we can define two distance regions: one
beneath the contact within w where we assume a uniform current injection profile, and the region outside of w where there
is no current injection. Mathematically, with x = 0 defined as the center of the stripe, we have I(x) = I0 for x < w/2, and
I(x) = 0 for x > w/2. In fabricating the laser we can either leave the active region in place outside of the stripe, or we can
remove it by etching through the active region outside of the contact area. The first case leads to carrier outdiffusion, while
the second case leads to surface recombination. We would like to compare these two cases.�� ��Problem: (1) With the active region in place away from the contact, carriers are free to diffuse outside the stripe width.
Solve for the concentration of the carriers N(x) in and out of the stripe assuming the carrier density and its derivative (i.e.,
the diffusion current) are constant across the x = w/2 boundary. Solve for the carrier profile in this case. (2) With the active
region etched away, the carriers recombine at the surface. Solve for the concentration of the carriers N(x) under the stripe
assuming the diffusion current (defined by the slope of the carrier density) is equal to the surface recombination current,
DnpdN/dx = −vsN , at the x = w/2 boundary. Place your result in terms of the diffusion equivalent surface recombination

velocity, vsD =
√
Dnp/τnp. Solve for the carrier profile in this case.�� ��Solution : From the carrier diffusion equation, ??, we can express the carrier concentration as

d2N(x)

dx2
− N(x)

Dnpτnp
= − I(x)

qV Dnp
. (14)

If we define x = 0 as the lateral center of the laser stripe, we then have that

I(x) =

{
I0 |x| ≤ |W2 |
0 |x| > |W2 |

(15)

If we define L =
√
Dnpτnp and G = I(x)

qV Dnp
, then the carrier diffusion equation can be rewritten as

d2N(x)

dx2
− N(x)

L2
= −G.

This is a special simplified form of the second order linear partial differential equation, whose solutions can be expressed
analythically [Kreyszig].

For |x| <
∣∣W
2

∣∣, withing the stripe width, the carrier diffusion equation has a solution of

N(x) = A cosh
( x
L

)
+GL2,

since the solution needs to be symmetric about x = 0, due to the statement of the problem. A will be determined by matching
the boundary conditions.

For |x| >
∣∣W
2

∣∣, withing the stripe width, the carrier diffusion equation has a solution of

N(x) = Be
−|x|
L ,

where B will be determined by matching the boundary conditions. The other mathematically possible solution, e
|x|
L , is not

physical, since the carrier density would go to infinity with x− >∞.
Case 1 - active region left outside the stripe

In this case, the boundary conditions at x = w
a are that N(x) is continuous, and dN(x)

dx is continuous. Applying these
boundary conditions, we have

A =
−1

2
GL2e−w/2L (16)

B = −A
(
ew/L − 1

)
(17)

=
GL2

2

(
ew/2L − e−w/2L.

)
(18)

(19)

3



Therefore, the carrier density profile is given by

N(x) =

{
GL2

[
1 + −1

2

(
e(x−w/2)/L +

(
e(−x−w/2)/L

))]
|x| ≤

∣∣W
2

∣∣
GL2

2

(
e(w/2−|x|)/L −

(
e(−|x|−w/2)/L

))
|x| >

∣∣W
2

∣∣ (20)

Case 2 - active region etched outside the stripe
In this case, there will be no carriers outside of the active strip. The solution for the carrier density equation inside

the strip is the same as previously derived, however, there will be a different boundary condition to satisfy at the surface.
Basically, the diffusion current at the boundary needs to be equal to the surface recombination current, −qvsN = qDnp

dN
dx .

If we define surface recombination velocity as vsD =
√

Dnp

τnp
, we have

N(x) = GL2

1− ex/L + e−x/L(
1 + vsD

vs
e

w
2L

)
+
(

1− vsD
vs
e
−w
2L

)
 .

�� ��End Example

Example 4.5

In a compressive strained, 1550 nm quantum well material, the Auger coefficient was measured to be C = 6 · 10−29cm6/s at
300K. The Auger threshold energy can be assumed to be 10% higher than the bandgap energy corresponding to 1.55 nm
lasing wavelength.�� ��Problem: If the temperature were increased to 340K, what is the value of the new Auger coefficient C?�� ��Solution : (2) From the problem statement, we can establish the relationship between Auger coefficients at different
temperatures,

C(340K) = C0 · e
−

0.1 · Eg
kT .

.
For this active material, the bandgap energy is Eg = 800meV. At 300K,

C(300K) = 6 · 10−29cm6/s = C0 · e−
80
26 ,

where kT = 26meV at room temperature. Finally,

C(340K) = C(300K) · e 300
340 = 1.436 · C(300K) = 8.617 · 10−29cm6/s (21)�� ��End Example

Example 4.6

The GaAs/AlGaAs quantum well active material from Table 4.4 is part of a 5 quantum well stack based material used
to fabricate an 800 µm long and 3 µm wide ridge laser. The transverse confinement factor Γ1 is 5.5%. From parameter
extraction, the average internal losses are determined to be αi = 14cm−1., and the injection efficiency is ηi = 0.75.�� ��Problem: Determine the threshold current for this laser and compare the contributions from spontaneous and non-radiative
threshold current components�� ��Solution : The threshold modal gain of this all active laser is given by

Γgth = 〈αi〉+
1

L
ln

(
1

R

)
= 14 cm−1 +

104

800
ln

(
1

0.32

)
cm−1 = 28.24 cm−1.

To calculate the threshold current, we first need to calculate the threshold carrier density using the Eq. ??. Since we are
dealing with a GaAs based material system, we only need to take into account the spontaneous threshold current component,
given by Eq. ??. However, we need to compare the two current components, and thus need to calculate the non-radiative
threshold current as well, given by Eq. ??. Using the two parameter fit from Table 4.4, and Eq. ??, the threshold carrier
density is

Nth = Ntre
gth
g0N = 2.6e

28.24
0.055·2400 · 1018; cm−3 = 3.22 · 1018 cm−3.

The volume of the active region consists of 5 8 nm wide quantum wells, bound by the laser facets and the ridge width,

V = L ·W ·Nw · a = 800 · 3 · 5 · 0.008 · 10−12cm−3 = 96 · 10−12cm−3.
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Finally, the threshold current is given by

Ith =
qV

ηi
(BN2

th + CN3
th) =

1.602 · 10−19 · 96 · 10−12cm−3

0.75

(
10.37 · 1026 + 1.334 · 1026

)
A = 24 mA

where B = 1 · 10−10cm3/s and C = 4 · 10−30cm6/s.
The contribution from the Auger non-radiative current is 1.334

11.704 = 11.4%.�� ��End Example

Example 4.7

Table 4.5 gives two parameter fit data for the material gain of 1% compressively strained 3 nm thick 1.55 µm quantum well
on Indium Phosphide that neglect Auger recombination. Now, we would like to include an Auger coefficient, determined in
example 4.5.�� ��Problem: Determine the new Jtr and g0 that would best model the gain curve for the gains between 500 and 2500cm−1.�� ��Solution : To solve this problem, we need to compute g02 and Jtr2 of the new logarithmic relationship between the gain
and current density. To accomplish this, we need to calculate the current densities for two different values of gain. The

new current density is given by J2 = J1 + JA, where JA =
q · C ·N3 · V

area
= q · d · C · N3. From Table XXX, we have that

g01 = 2600cm−1 and Jtr1 = 13A/cm2, and the quantum well width d = 3nm. Since we also know the carrier density versus
gain dependence for this material from Table XXX, g = g0N ln N

Ntr
, and g0N = 4000cm−1 and Ntr = 3.3 · 1018cm−3, we are

in a position to calculate the total current density. At transparency, g = 0, we have

Jtr2 = Jtr1 + JAtr = 13A/cm2 + q · d · CN3
tr = (13 + 103)A/cm2. (22)

At J1 = e · Jtr1, we have

g = g01 ln
e · Jtr
Jtr

= g01 = 2600cm−1, N = Ntre
g

g0N = 3.33 · 1018e

2600

4000 cm−3 = 6.32 · 1018cm−3. (23)

From here,

JA = q · d · C ·N3 = (1.6 · 10−19C)(3 · 10−7cm)(6 · 10−29cm6/s)(6.32 · 1018cm−3) = 727A/cm2

and finally
J2 = e · Jtr1 + JA = 762A/cm2.

Now, g02 can be calculated from the transparency current,

g02 =
g01

ln
J2
Jtr2

=
2600cm−1

ln 762116
= 1381cm−1.

�� ��End Example
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