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The 3dB point is defined as the frequency at which .
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a) From Eq. 5.46,
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" The solution for problem 5.12 gives values for wg and 7. Using these values, we can find Wadp:
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(Note: Eq. 5.54 can also be used to geg‘{he samé ﬁs}ults (£1%) since 72 < w}.)

b) Comparing Eq. 5.163 to Eq 5.45, we can see that carrier transport effects can be included in our -
model by the insertion of a factor TI}J?.’ (Neglecting leakage, x = 1.) So, proceed as in part (a). :

1
14 jwr,

wh
g —wT + (@)

We saw in part (a) that we could have neglected 7. So, we can simplify our expression to

1
V3 = 'H(w)‘=

1 1 w}

\/_ \/1+w3dBr \/[wR wsdB]

Wwh = (1+ wiapr?)(wh — 2wkipwh + wiip)

T,='50ps . : iy v ; é __;
Solve numerically to get S ‘20,1/ m‘lﬂll ?)47&[3, / <
I= 20 - woap = 14IQ0° radfs find  faap = NReGH
I =5l —+ waep = 4N9 rad/s find faap =T GHz
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. ¢) Toinclude carrier leakage, we use the parameter 7, which is incorporated by altering the values of
wp and 4 according to Eq. 5.164 and 5.161:

wip = wh/x

1:=7-1x’3'—+7pp

Ty 14 50 ps

— et T 1, - .1
T 300 ps 26 (6.166)

x~1+4

a From problem 5.12,

Y I=2La—  ywn =1.095% 10° 57}, qypp = 0819 x 10° 571, and 7, = 1.70 x 10° s~}
 I=5Ly — NN =2479x 10% 6™, qpp =38.411x10%87 ,and 7y = 5.39 x 109 -1

2 .
“"% from Eq.(5.163)
\/ Wi — wispl + (waaBve)®

1 1
N ‘1 + jwsaBT,

% terms are negligiblg in comparison to wyp terms. Proceed as in part (b) to geb

2wip = (1+ wisp™ )(wm 2wi4pWin +wiip)

} < Sclve numerically to get \3-5/5//2 &z 2"@1 L/ é (L/Z

I =21y — wzap = 1\09 radfs ~ And fsas —N{GHz

I =55y —+wsip = WOQ rad/s /lnd fadB = GHz,

3 7: éﬁzﬁJ 538/ 6’#2
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~5.15:

Using normalized fields for convenience such that
< EQE({) >= P
we can write the autocorrelation function in Eq. 5.144 as
< EQE@ ~1)* >= Py 97 ¢ITl/7eon (5.144)

Now, if the power in the delayed leg is attenuated by a, such that P, = o P, we can write the power at
the detector as

- Pyt =< [E(t) + VaE(t - 7)] [E(t) + VoE(t -1)]" >
=< EQ)E(t)* > +ta < E{t — 1)E(t — 7)* > +va < E(t)E(t - 7)* > +Va < E(t - 1)E()" >
= Py + aP, + VaP, ¢v" e~lrilrean 4 VaP, e=ivr g-lrl/reen
= Py + P; + 2\/ P P; cos(wr) e~ |7t/ cenr

Then, fringes are visible as the value of cos(wr) is varied:

Pmdt = P{ -+ P2 + 2\/ P;Pz g““h”'zoh

Prin = Py + Py — 2/ P Py PRt L TR

Pmtxz - Pmin = 4\/ P1P2 .3*%?'!/?«&
Pmaz + Pmin = 2(}“"1 + P’z)

Therefore, O P
“Arlfreen o £1+ P2 Pmaz — Pmin 5 145
¢ 237 lj 2 Pmat + Rmin ( )

The problem asks for the coherence time for the case when v = 3 ns:

e~lireer = 0.2
8 = 1.864 ns

Teoh = m n

The linewidth is then given by Eq. 5.149:

Avrw =

= 171 MHz (5.149)

T Teoh
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16:

From Fig. 5.26, estimate u, near Pya = 2.6 mW:

- AP, .y 0.2 mwW
B=—3p 2B mW

=0.04

Using the effective mirror model with VCSELs, for all practical purposes, we can assume lossless mirrors
fe transmission is reduced by e~aLets according to the discussion surrounding Eq. 3.64. However,
bsys < 0.005 represents a negligible reduction in transmission for VCSELs.) -

Eq. 5.175 is derived assuming lossless mirrors and can be used to extract x; from p,. If all of the light
wupled out of mirror 2, then F| = 0 and since F; 4+ Py '

= 1 for lossless mirrors, we have shown that
1= 1. The problem also says to assume that we are well above threshold; so we can neglect the third term
deﬁning Hz. With F; = 1, we can wrif;e Eq. 6.176 a3 -

- Y
H2 =251y (;)—; - 1)
Solve for «;:
P S
7 (;',1:- - 1)
_ - 0.04
2220 pe) (555 - 1)
= 1468 x 101° 5!

Solve for foz:

From Table 5.1,
ry = / Ha = 0.995
"= 1

} = 1-0.995° = 0.00998 assuming lossless mirrors
— —_— H10™ em — -~14
TL—%*#ﬁaﬁ%,;‘l/;fz-me 8

oy = ({1488 101 5~1)(0.995)(2.8 x 10~3¢ s)‘)2
est = " 0.00998

.= 1.68x 10~8

Seat (dB) =10 log(fcwt)
= 21.74 dB
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Chapter 5: Dynamic Effects
*‘5.17:

From Fig. 5.26 and Eq. 5.175, cos(28L,) goes through one complete period for a change in current of
0.4 mA. Assuming that the change of 8 with current is approximately linear, we can write

Solutions Manual: Coldren & Corzine 5-17.1

d(26L,) _ 2
di 7 T04mA

Neglecting the change in index due to current and temperature, we can write the first equation above
as
ds- 2r
2Ly (277) 2 = =T
Pl20M) T = d
which can be rearranged:
1

nL,, =3
(0.4 mA) 7 2 “G)
and simplified
-2
A -
(0.8 mA)R (7}1)

All variables are known except %ﬂ. Assuming that the wavelength change with current is due solely to
the change in temperature, we can write

d\o _di\g dT dP,
dI T 4T dP; dI

where T and Py denote temperature and dissipated power, respectively.

d/\o nm . .

I = 0.083(—3— given in problem
ar __°C . . bl
aF; = oW given in problem

Py=Pip~ Poy = IV - P,
dP; _ dP; AP,y =3y 25 mW - 0 mW =9 47mW
dl — dI a1 65mA-175mA ~ " mA
dhg nm
ar =%

Then, plugging back into the equation for Ly, we have

L - (980 nm)?
¥ 7 (0.8 mA)(4.2) {0.502m

Ly = substrate thickness = 480um
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* 5.18:

a)

= vgtgv jezt

2L7‘2

vg(1 — r2)(rat,)
2LT2

Ky {(p. 247)

IC]::

g is not specified by the problem. Assume that laser is made in the InGaAsP material system and the
mode has fi; = 4.0 as mentioned on p. 40.

Assume a facet reflectivity 72 = 0.32.

L0x107em/ (1 _ §,39)(\/0.04v/0.75)

Ky = =1.50 x 109 g~?
1 2(0.03 cm)+/0 32
o 2ymerly _ 20145)L, s .
Text = - = TX 100 cmfs = {0.967 x 10 s/km)L, (p. 250)

C = ksTeae V1 + @2 = (1.45 x 10° km™YL,/1+ a2 (5.180)
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Figure 5.18a. Feedback coefficient, C, vs. fiber length, L.

b)
Ay 1

Avg ~ (1+C <os(@BL, ¥ o))

(5.181)

Since cos(26L, + ¢4) can be adjusted to any value between -1 and +1, we can break this equation into

2 cases:
Case 1: C < 1:
minimum £ = L
AVO (1+C)
maximum AA;; = (—1—_—1535
Case 2: C > 1:

I Y7, 1
minimum A = 1+6)

5 Av
maximum Bug = o0

For C > 1, cos(28L, + ¢a) can adjusted to be equal to 1/C, which yields an infinite bandwidth. In this
case, the laser has split into two lasing modes, which implies that that Ay is meaningless for this case.
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10
MAXIMUM
) Note that the maximom linewidth
S5 8F is infinite for Cz1. The laser actually
M fases in two modes in this case.
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Figure 5.18b. Laser linewidth vs. feedback coefficient, C'.



