Chapter 5: Dynamic Effects

* 5.12:

Use Eq. 5.131 to calculate the RIN of the VCSEL:
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RIN = 2hy [a1+a2w

2
2 = (5.131)

We do not have values for Py, H(w), a;,

and az. So we must write these variables using known quantities
(i.e. those given in Table 5.1):
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To find the output power, P, assume linearity over the current range of interest (it will be shown later
that gain compression is negligible in these cases):

h
Py = Fyna(I - Ith)-—‘;i

The definitions for a; and a» are given by Eq. 5.130:
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These can be rewritten using the definitions below these equations on p. 229 and by replacing output
power in these equations using Py = l—vifﬂfrfa—"'—h"—v:

20z

2R,, FivgamV :
Town T e

ay 3
TAN

' T
as = 2R_,pF1vgamV - 2170‘«2%—53

Now, use values from Table 5.1 to solve Eq. 5.131:

R, = 2:00% 10P e 2 571

can be used above threshold.
Fl =09

v = 35 x 101% cm/s

Spontaneous emission is clamped at threshold. So the threshold value

on = 43.6 cm~?

V =24x 10712 ¢m—3

Tan = 1.52 ns Carrier density is clamped at threshold. So Tay is also clamped. See Eq. 5.27.
o = 0.617

wr =(3.423 GHZ)?"(&?;T;{'&W This can be obtained using Eq. 5.51 and the fact that Np « 1.
I =21 - wp = 9.66 x 10°rad/s

NOTE: The solution has an error here.

I =514 - wp = 38.64 x 10%rad/s omega_r’2 is proportional to Np and I, not
omega_r. Therefore:

| = 2Ith --> omega_r = 1.441e10 rad/s 119
| = 5th --> omega_r = 2.883e10 rad/s
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T =0.0382

To find whether gain compression can be neglected, we must calculate an estimate of the photon density
at the desired current levels. Using linear extrapolation from the current level and photon density at 1 mW
output power (Table 5.1), we find the photon density at I = 21,4 and I = 51,:

=Ty . N
LR=Ta, — Nﬁ

. 14 . -3 [=0.719 mA
Np = (2.80 x 10'* em™3) mMA-0.719 mA

I=2L =+ N, =12x 10" ¢cm—3
I=8Ly— N, =50 x 104 ¢m™—3

€=15x% 10" cm® The low value means that €N, < 1 and gain compression can be neglected.
(More accurate values of N, can be calculated using the rate equations, if necessary.)

o = ngoﬁ; %2 apo = 2.50 x 10~ !* cm? (5.32)

a= i’ﬁ“ﬁ; = ap=5.10x 10~ ¢m? (531)

Y =9INN +YPP

7 changes due to the change in N, according to Eq. 5.36:

YNN = I/TAN + vgaN,,

ypp = l'vgap N,
I'=2ln— vy =1.095x10°s", ~7pp =0.819x10°s~!, and = 1.9 x 10° s-?
I=5Ln— yvn =2479x10°s"!, +4pp = 3.411 x 10° sl and vy =59x10°s~!

Plugging these values in, we can solve for the variables in the original equation:

variable I =20 I =51}
Wr 9.66 x 10° rad/s | 38.64 x 10° rad/s
|H ()| 1.00015 ~ 1 1.000007 ~ 1
Py 0.40 mW 1.62 mW

a;(first term) 1.217 » 108 s~ | 1317 % 1p%! ¢—*

1
1

ai(second term) | 0.107 x 10%' s=4 | 6.877 x 104! s—*
aa(first term) 2.812 x 102252 | 2812 x 1023 s-2

}
1

az(second term) | —0.0022 x 10?3 =2 | —0.0345 x 1023 s=2

Using the values in this table, we can calculate the RIN for this VCSEL:

I =2k, - {ZITN =167x10""s=_138 dB/H-

I =50 — %fﬁ =341x 10" s = —155 dB/H:

Simplifying approximations could have been made along the way. By comparing the values of the
second terms of @) and ay to the first terms of these variables, we can judge the validity of using a low power
approximation for the I = 2/;; case. A low power approximation (omitting the second term of each of these
variables) would have given an error in a; of only 10% and an error in a, of < 1%. Since a; dominates
Eq. 5.131 in this case, this leads to roughly a 10% error in the calculation of the RIN. If this error could be
tolerated, then the low power approximation would be satisfactory in this case.

The high power (low frequency) approximation omits the azw? term and sets the transfer function to
lin Eq. 5.131. (This approximation is summarized by Eq. 5.133.) This approximation is valid for both
the I = 25, case and the ] = 5, case. For ] = 25h, aaw? = (2.%)a;. For I = 5Iin, asw? =~ (0.3%)a;.
Therefore, the error in each case is relatively small when this approximation is used.
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