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AbtrPct-Energy-band calculations are made for the three valence bands in silicon and germanium 
in terms of the cyclotron resonance parameters. The energy in the band measured from R = 0 is 
not assumed small compared to the spin-orbit splitting so that parabolic bands do not result. The 
above calculation results from considering the first term of a perturbation expansion of the K * p and 
spin-orbit perturbations. The contributions from higher-order terms are examined and found to be 
important for germanium but not for silicon. Matrix elements for direct optical transitions between 
the valence bands are calculated from the cyclotron resonance constants. The free-u&tier absorption 
is computed from the present band-structure calculations, and comparison is made with recent 
experimental data of R. NEWMAN for germanium. A correction to the split-off valence-band 
calculations is estimated, using the experimental data. Formulae are derived for degenerate pertur- 
bation theory with two perturbations of different orders acting. 

1. INTRODUC’MON 

CONSIDERABLE progress has been made recently 
in understanding the band structure of silicon and 
germanium. This progress has resulted chiefly 
from cyclotron resonance measurement& 2* *) 
and free-carrier absorption”. 5) measurements. 
The theoretical discussion of degenerate bands 
near an energy extremum has been given by 
SHOCKLJZY@). SHOCKLEY’S treatment has been ex- 
tended to include the effects of spin-orbit coupling 
by DRESSELHAUS and other& ‘* @. The analysis 
of free-carrier absorption in p-germanium by 
KAHN@) has confirmed the interpretation of cyclo- 
tron resonance measurements and determined the 
spin-orbit splitting of the valence bands. 

The general second-order perturbation equation 
for the energy bands including spin-orbit splitting 
has been given as a sixth-order determinant by 
DRESSELHAUS, KIP and KITTEL(~). Explicit expres- 
sions for the energy bands have only been given 
for the case where the spin-orbit splitting is large 
compared to the energy in K-space measured from 
k = 0. ~HN’S(s) analysis also makes this approxi- 
mation. In the present paper, the general secular 
equation is explicitly written as a cubic equation 
in Section 2. Numerical calculations are made for 
specific directions in silicon and germanium. 
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The sixth-order secular equation of reference 
one is derived as the leading term of a perturbation 
expansion of two perturbations of different orders. 
General expressions for the fourth-order terms 
are obtained in the appendix and are used in 
Section 3 to estimate the accuracy of the energies 
obtained from the leading term. 

Matrix elements for direct optical transitions 
between the valence bands are calculated in Sec- 
tion 4 from the cyclotron resonance constants. The 
free carrier absorption is computed in Section 5 
from the present band-structure calculations and 
comparison is made to recent experimental data 
of R. NEWMAN( 

Many references will be made in this paper to 
the work of DRESSELHAUS, KIP and KITTEL(‘). 
Subsequently this paper will be referred to as 
DKK. 

2. BAND STIWCI’UBE 

The holes in the valence band of germanium 
and silicon are now known to possess wave func- 
tions which are in many respects similar to atomic 
p functions and may be thought to arise from such 
functions as we decrease the lattice constant of a 
fictitious germanium crystal from infinity to the 
actual value. The overlap of the individual atomic 
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p functions is, of course, large at the actual lattice 
constant and a very considerable modification of 
the atomic wave function naturally results so that 
the atomic approximation must not be taken too 
literally. 

The holes of minimum energy lie at k = 0 in 
the Brillouin zone and in the absence of spin- 
orbit splitting would be six-fold degenerate, cor- 
responding to the three p functions times the two 
spin functions, spin up and spin down. Spin-orbit 
splitting partially removes this degeneracy by 
lowering the two j = l/2 bands with respect to 
the four j = 312 bands. 

SHOCKLEY(~) derives the form of the energy sur- 
faces in the neighborhood of k = 0 by a perturba- 
tion approach. In a periodic lattice the one electron 
wave functions can always be written as the well- 
known Bloch functions. 

#k = e**‘uk(r) (1) 

where udr) is cell periodic. The Schroedinger 
equation can then be written 

= {&-(ha/2m)P}ur(r). (2) 

The term (k/m)& *p is treated as a perturbation 
for determining uit and & in the vicinity of k = 0 
in terms of the complete set of cell periodic wave 
functions and energy eigenvalues at k = 0, which 
are assumed known. It is convenient to define an 
eigenvahre E’k to simplify the form of eq. (2). 

E’k = &-(ke/2nt)ks. (3) 

In a lattice such as the diamond lattice where the 
inversion is a symmetry operation, the first-order 
matrix elements of the k - p perturbation vanish 
when the zero-order wave functions are taken at 
k =O.Ifthebandatk = 0 is nondegenerate, the 
surfaces of constant energy are spherical and the 
energy varies parabolically with the magnitude of 
k. If the band is degenerate at k = 0, the surfaces 
of constant energy may have more complicated 
shapes. The energy will still vary parabolically 
with the magnitude of k along a given direction in 
k space. SHOCKLEY(@ has analysed the form of the 
energy surfaces for cubic crystals using degenerate 
second-order perturbation theory. We repeat his 
derivation in more detail. 

Consider a complete orthonormal set IuJ~> of cell- 
periodic wave functions at k = 0 where J indexes differ- 
ent energies and i refers to degenerate functions for a 
given energy. The degenerate functions 1 UJ , > for a given 
energy define a tinite vector space where the vector c 
whose components are ci, c,, . . . ca represents the func- 
tion [ciyr~+c+~s+ . . . c,aJ s]. Then the second-order 
energies and the correct aerothsrder wave functions 
are found by determining the eigenvalues and eigen- 
vectors of the finite matrix equation 

Hkpc = E’,c (4) 

where the elements of HkD are given by 

L,* 
EJ+EL 

(5) 

The prime on the summa tion means that the term 
L = J is excluded. The eigenvalue E’, is related to the 
actual energy Ek by the definition (3). 

The valence band wave functions at k = 0 in german- 
ium and silicon transform according to the representa- 
tion l + in the notation of D&K. With respect to the 
basis functions Is,+>, I%+), IQ+> the Hamiltonian of 
eq. (4) may be written 

I&r, = 

A%,& Nk&P, - 

Lkr2+M(k2+kza) Nk$z 
I 

(6) 
Symmetry arguments have been used to replace the 
sums over matrix elements in tq. (5) by the three con- 
stants L, M, and N. The quantities L, M, and N can be 
determined from cyclotron resonance measurements as 
discussed by DKK. Two sign ambiguities give four 
possible sets of L, M, N of which the two with positive 
N are easily discarded. In germakm the choice between 
the two remaining sets seems clearly to be the set selected 
by DKK. For silicon at the present time an ambiguity 
remains, although DKK state Ia preference. 

The effects of spin-orbit coulpling are most easily con- 
sidered by regarding the spin arbit coupling interaction 
energy x=0 as a perturbation. 

In the form of eq. (7) ,,J& is an operator on the Bloch 
function & It can also be written in the following form 
as an operator on the cell periodic function us ._ 
3E’m = (k/4nV)[ V Yx 

+$&%s)[VVx k1.u. (8) 

The first term is k independent and is analogous to the 
atomic spin-orbit splitting term. The second term is 
proportional to k and is the additional spin-orbit energy 
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coming from the crystal momentum. Rough estimates 
indicate that the et&t of the second term on the energy 
bands is less than 1 per cent of the effect of the (k *p) 
terms. The relatively greater importance of the first 
term comes essentially from the fact that the velocity of 
the electron in its atomic orbit is very much greater than 
the velocity of a wave packet made up of wave vectors 
in the neighbourhood of k. In subsequent discussion the 
k-dependent spin-orbit term will be neglected. 

When spin-orbit effects are considered we take as our 
degenerate basis functions 1 c,+f ), Ic,+f ), (c,+f ), 1 c,+$ ), 
[ c+$ >, 1 Q+$ > ; where f and 4 designate the spin func- 
tions spin-up and spin-down or (b) and (p). The Hamil- 
tonian of eq. (4) then becomes a 6 x 6 matrix which may 
be written schematically 

where Hk,, is the 3 X3 matrix of eq. (6). In this repre- 
sentation the k-independent spin-orbit perturbation has 
the form 

r -i 0 0 i 0 0 0 0 0 0 -1- i I 

Hao=-+ 0 0 0 0 0 1 0 1 -i -i 0 0 

0 0 i i 0 0 

L -1 -i 0 0 0 0-l 

(9) 
The symmetry properties of the matrix elements permit 
one to express all matrix elements in terms of a single 
constant A, the spin-orbit splitting. If we think of a 
fictitious germanium crystal in which we vary the lattice 
constant, the spin-orbit interaction Hamiltonian will 
only change through the multiplicative constant A. It is 
to be expected that in the tight-binding limit the spin- 
orbit Hamiltonian will be diagonalized by transforming 
to the Jm, representation. Since the diagonalization is not 
affected by the value of A, the same transformation will 
diagonalixe the spin-orbit interaction even though tight- 
binding is not a good approximation. The Jrnf trans- 
formation matrix is 

U= 

-l/(z)+ 0 0 0 1/(6Y 

-i/(2)* 0 0 0 -i/(6)* -i/(3)* 

0 (2/3)+ -l/(3)* 0 0 0 

0 - l/(6)+ -l/(3)+ -l/(2)* 0 0 

0 -i/(6)+ -i/(3)* i/(2)* 0 0 

0 0 0 0 (213)f l/(3)* 1 -l/(3)+ 

(10) 
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The transformed matrix is 

H’,, = U-‘H,,U 

A/3 0 0 0 

r 
OA,‘3 0 0 

0 0 H’,,= -2A,:3 0 

0 0 0 A’3 

00 0 0 

00 0 0 

0 

0 

0 

0 

A,‘3 

0 -2A!3_ _I 

(11) 
The new basis functions pi are given in terms of the old 
basis function l , by the relation 

(12) 

The phases chosen for the Jmj functions are not the 
conventional phases but have been selected to simplify 
the form of the Hamiltonian in the light of subsequent 
discussion. The ordering of wave functions implicit in 
the matrix (10) is 

1 j = 312; m = 3/2), 1 j = 312; m = l/2 >, 

lj =1/2;m = l/Z),lj =3/2;m = -3/2), 

lj=3/2;m = -1/2),/j = 1/2;m = -l/2). 

A theorem due to KRAMERS states that for any odd 
electron system in the absence of an external magnetic 
field all levels are necessarily doubly degenerate. The 
proof for a one-electron system consists in showing that 
the operator 

K= -io,fJ (13) 

commutes with the Hamiltonian including spin-orbit 
interactions and has the property that JP = - 1. (’ is 
the complex conjugation operator, or, is the spin operator 

0 -i 
r 1 i 0 ’ 

The assumption K+ = a# then leads to 

m = a*a+b = -# which is a contradiction. Therefore 
every state is at least doubly degenerate. When K-arc?.’ 
operator is applied to the Bloch functions of a crystal it 
leads to the results that wave functions with k and --k 
are degenerate even when the crystal does not possess 
inversion symmetry. If the crystal does possess inversion 
symmetry we consider the operator 

‘x = -ioycJ (14) 

where J is the inversion. (For the diamond lattice J is to 
be replaced by <rIJ) where r is the nonprimitive trans- 
lation (l/4, l/4, l/4). This operator also commutes with 
the Hamiltonian and has the property p = - 1. 
Furthermore the ‘x operator leaves &r invariant so 
that in this case the bands are doubly degenerate. It is 
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easily seen that4 = ws and K# = -3: 
[ 1 wb t 1 are always 

orthogonal, also %‘4 is normalized if $ is ~ormalixed. If 
4s is chosen orthbgonal to both $r and Ur$I, it is easily 
seen that x;Ct will also be orthogonal to both $r and 
uu;l.. Hence it is alwavs nossible to choose a basis of the 

r= 

r 

0 
-Hll+Hze+2iH12 

2(3P 

HI,-Hz,-2iH,, 
0 

HI,-iH, 

2(3Y (211 
HI,-Hz,-2iH,, -HIB+iHB 

_ (6)) j2)r 
0 

following identities 

As a consequence of these identities the Hamiltonian 
matrix will take the following form when referred to a 
Kramers’ basis 

H= [_;* -:*I (18) 

In the present where r has the property rr = -l? 
&dimensional case r has the form 

0 Yl Yz 

r = -Yl 0 Ya 

[ 1 -Y2 -Y3 0 

(19) 

The unitary transformation matrix from one Kramers’ 
basis to another has the form 

U= [_“R. ;I 
where H’ = CT-‘HU. We will use the standard forms 
(18) and (20) in order to write 6 x 6 matrices as two 
3 x3 matrices. The transformation matrix (10) has the 
standard form (20). The inc values for a given j arc 
Kramers degenerate. This result follows from the fact 
that Kramers’ operator -io& is a time reversal operator. 

We write the 6 x 6 k*p Hamiltonian corresponding to 
eq. (6) in the Jm, representation. The total Hamiltonian 
is then the sum of the k*p Hamiltonian and the spin- 
orbit Hamiltonian of eq. (11). The zero of energy is 
taken at the top of the valence band so that A/3 must be 
subtracted from the spin-orbit Hamiltonian. The total 
Hamiltonian is _ 

G= 

-H13+iHs 

(3Y 

HII+H,,+~Hs 

6 

H,,+H,-2H, 

3(2S 

H13-iHp3 

(6P 

Hd-H,--2Hm 

3(2s 

HII+H~-Hs~ 

3 - 

(21) 

(22) 
The symbols H ij refer to the elements of the matrix 
given in eq. (6). 
We make the definitions 

xetx = -H,,+H,,+21H,, 

Yeaq = H13-iHp 

Z = H,,+H,,-2H,. 

The number of nonzero terms in r can be reduced by 
making the following unitary transformation 

+L 
w 
x+v 7r 

expi --- c 1 0 
2 4 

0 
x-9 rr 

expi --- 
[ 1 2 4 

0 

0 

I 

i x-“-T 
[ 1 2 4 I 0 0 exp 

(26) 

&CL 
w 

x+7) * 
-expi --- 

[ 1 0 
2 4 

0 -expir+-i] 0 

0 0 -expi [ -- x-77 

2 I -lr 

4 1 

(27) 
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The transformed Hamiltonian then becomes 

G’ = 

H,, + HE r - Y+iX/Z 
2 (3) i 

Y-l-ix 

(6) t 
1 

Hu +Hz +4Hss (2/3)+iY cos(x--27) 

6 - (2) * 

Y-ix (Z/3)-iY cos(x-27) 

(2)* - -- 3 J 

Hn+H,+H,_d 

(28) 

0 0 0 

r’= 0 0 
Y sin (x-27) 

(2)) 

I 0 
- Y sin (x-27) 

0 
- (2)& - 1 

(29) 

For &-vectors in the x--y plane the quantity Y vanishes ; 
for k in the (111) direction x -29 = n so that for these 
cases the 6 x 6 matrix has been factored into two 3 x 3 
matrices. In the general case further transformations 
are necessary. A brute-force method of making r = 0 
in general has been found but will not be given here 
since G becomes very complicated. It is not diRicult to 
obtain the general secular equation as a product of two 
cubits directly from the matrix as given in eqs. (28) and 
(29). The general secular equation can be written 

H’11H’,H’,+2H,,H,H,,--H’,,H,2- 

--H’,,H,,B--H’,H,,2-(A13)(H’,,H’,,+ 

+H’,,H’,+H’,,H’,-HH,,2-H~32-HH232) = 0 

(30) 

Hlii = Hii+(h2/2m)k2-Ek. (31) 

The symbols H,f refer to the elements of the matrix 
given in eq. (6). 

Along the simple directions (100) and (111) the 
secular equation factors into a quadratic term times 
a linear term. The linear term corresponds to a 
band which is unaffected by spin-orbit splitting 
and hence is parabolic within the limits of the 
approximations made in this derivation. In ger- 

manium the parabolic band is the upper valence 
band or heavy mass band. 

KANE 

All bands are parabolic in the limit of spin-orbit 
splitting very large or very small compared to the 
second-order k * p energy. The limit of k * p energy 
large compared to spin-orbit energy is not of real 
interest in germanium because higher-order per- 
turbation terms which have been neglected here 
become important when the perturbation energy 
becomes of the order of the band gap. In silicon 
where A % 044 eV, the small A approximation 
may be useful for some purposes. 

Calculations of the valence-band structure of 
germanium have been carried out using the values 
L = -32-O (tis/2m), M = -5.30 (h2/2m), N = 
-32.4 (ti*/2m) determined from cyclotron reson- 
ance constants as given by DKK. The value 
A = 0.28 eV was used. After the calculations were 
completed, the comparison of theory and experi- 
ment indicated that A = 0.29 eV was a better 
value for the spin-orbit splitting. The calculations 
have not been corrected for this change. The 
energy and slope have been calculated for all 3 
bands and for the (loo), (ill), (llO), and (Y) 
directions. The direction (Y) makes equal angles 
with the (loo), (1 ll), and (110) directions. The 
results are plotted in Fig. 1 as E vs. k*. The slopes, 
(2m/hz)dE/d(kz), are plotted in Fig. 2. In a plot of 
E vs. kz the customary parabolas become straight 
lines. The surface of the Brillouin zone occurs at 
k = 0.51 atomic units in the (111) direction so 
that these calculations cover only a small part of 
the Brillouin zone. 

For the (100) and (111) directions the heavy 
mass-band graphs are straight lines. For the (110) 
direction the heavy mass-band graph is nearly 
straight, the departure from a straight line is best 
seen in the graph of the slope dE/d(k*). For a 
larger range of kz the curvature of E vs. k2 in the 
(110) direction is more noticeable. 

For the (100) and (111) directions the light mass- 
band (band 2) bends up to become asymptotically 
parallel to band 1. In the (110) direction band 2 
bends up appreciably but always remains steeper 
than band 1. The bending of band 2 is not of 
great significance to transport problems because 
the bend occurs at energies appreciably greater 
than kT. The effect is very noticeable in free 
carrier absorption, however, because the absorbing 
holes make vertical transitions from band 1 where 
the value of kz corresponding to thermal energies 
is much larger. 
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FIG. 1. E vs. k’ for P-germanium. (T) direction shows correction to band 3 to gitre agreement with 
free carrier absorption at 300°K and 77°K. 
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0 5 10 15 20 25wo-4 
k2 (atomic units) k2 (atomic units) 

011) 

0 5 10 15 20 25’WY4 
k2 (atomic units) 

(110) 

FIG. 2. Hope of E vs. k2 for p-germanium. 

The slope of band 3 increases with k2. Band 3 
is accurately isotropic for small k* and remains 
reasonably isotropic for large k2. 

The status of the energy bands in silicon is more 
uncertain owing to the ambiguity in sign of the 
cyclotron resonance constants. Furthermore, the 
limits of error of the constants are larger than in 
germanium, so that even for a given choice of signs 
there is considerable uncertainty in the effective 
mass of the heavy mass band. To illustrate this 
point, the value of the reciprocal effective mass in 
the limit of spin-orbit splitting small compared to 
the k * p energy for the (110) direction will be 
cited. The set of values A = -4.0 (ti2/2nt), 

B = +I*1 (ti2/2m), C = -4.0 (ti2/2m) gives a 
value +0*39 for (2m/hz)dE/d(k2) in the (110) 
direction for large k. This is the choice of sign 
preferred by DKK. The other choice of sign 
A = -4.0 (P/2?@, B = -1.1 (/P/2fn), c = 
-4.0 (~~~2~) gives a value of -0.71 for ~2~~~z) 
dE/d(k2). However, if we take the extreme values 
of A, B, C in a direction to make the reciprocal 
effective mass more negative with the DKK choice 
of sign the slope becomes -0.73. A positive slope 
of +0*39 could rule out the DKK choice of 
sign because the maxima in the valence band 
would occur away from k = 0. If the cyclotron 
resonance constants could be determined more 
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FIG. 3. E vs. k* for p-silicon. 

k2 (atomic units) k* (atomic units) 
(100) 

FIG. 4. Slope of E vs. A’ for p-sikon.O1t) 

accurately the correct choice of signs might be (I;e/2m), M = -3.9 (tis/2m), N = -7.7 (tis/2m) 
decidable. corresponding to A = A.0 ~~~IZ~), B f -1.1 

The energy and stope of the valence bands in (AsjZm), C = -4.0 #s/2@. The choice of sign 
silkon have been calculated for the (100) and (111) used here makes the silicon band structure qualita- 
dire&ons. The results are given in Figs. 3 and 4, tively similar to germanijm. This choice of sign 
The values of the parameters used were L = -7.2 is opposite to that given ih DKK, 
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3. HIGHER-ORDER CORRECTIONS 

These calculations of band structure have been 
based on the diagonalization of an interaction 
Hamiltonian between the triply degenerate valence 
wave functions at K = 0. The Hamiltonian was the 
sum of two parts: a first-order Hamiltonian of the 
spin-orbit interaction and a second-order Hamil- 
tonian of the K . p perturbation. The technique of 
simultaneous diagonalization is clearly the best 
when both perturbation Hamiltonians are of the 
same order of magnitude. This procedure is 
formally indicated by making a perturbation ex- 
pansion in powers of h with the (K * p) perturbation 
multiplied by X and the spin-orbit perturbation 
multiplied by X2. In nondegenerate perturbation 
theory the assignment of different powers of h to 
different perturbations merely gives a rearrange- 
ment of the terms of the perturbation expansion. 
In degenerate perturbation theory, however, differ- 
ent relative powers in A result in essentially differ- 
ent series. Convergence is always hastened by 
arranging powers of h such that all perturbations 
act simultaneously to remove the degeneracy. If 
the degenerate Hamiltonians are of different orders 
of magnitude the procedure is still formally correct 
but unnecessary. Formulae for degenerate pertur- 
bation theory with two perturbations are developed 
in the appendix. 

We make the convention that the degenerate 
states we are interested in are labeled by small 
subscripts j. Other states are labeled by capital 
subscripts J. For the case of a perturbation P of 
order X where all matrix elements Pi j are zero and 
in addition a perturbation Q of order h*, we have 
eq. (A3) for the third-order energy, E,131, and 
eq. (A4) for the fourth-order energy, EfL41, in the 
appendix. For our purposes P is the k * p perturba- 
tion which only connects states of opposite parity, 
Q is the spin-orbit interaction which only connects 
states of like parity. On parity grounds alone all 
third-order terms are zero and fourth-order terms 
6 through 11 in eq. (A4) are zero. The nonzero 
terms will be repeated here. 

&I41 = 

c 

pi KPKi 

K (E,O-EKO)*+ 

+ c PiPLKPKJPJi 

K L, (EiO-ELo)(E,o-EKo)(E~-EJo)+ 
> 9 

KANE 

+ 2Re 
PiLPLKQKi 

(Ez-EL”)(Eio-EKO) + 

+ 
c 

PiKQKJPJi 

K,L (E~“-EKo)(Eio-EJo) 
(32) 

FIG. 5. Energy levels at R = 0 based on calculations by 
F. HERMAN. Reproduced from DRESSELHAUS, KIP, and 

KITTEL (reference 1). 

The magnitude of these fourth-order terms will 
be discussed for germanium. The estimates refer 
to the (100) direction calculations but the magni- 
tudes should be comparable for all directions. The 
energies of bands at k = 0 are given in Fig. 5, 
based on calculations by F. HERMAN( The esti- 
mates of corrections to the present calculations 
from higher order terms are based on these k = 0 
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energies except that we assume that the rs- band 
is only 0.88 volts above the valence band as indi- 
cated by the optical absorption work of DASH and 
NEWMAN( 

The second term is the most important term in 
eq. (32). The first factor, Ei[sl, is the total second- 
order energy of the ith band, hence it contains 
both spin-orbit and K -p contributions. For small 
K, Ei[U is approximately +A/3 for bands 1 and 2 
and -2413 for band 3. The summation in term 
two is very similar to the second-order k * p energy 
of eq. (5) except that the resonance denominators 
are squared. The magnitude of the second term is 
then roughly Ei[21(E,[“(k) - E,‘“(O))/(E to - EKO) 
where EKO refers to the band which contributes 
most to the summation. For band 1, EKO- Ei” is 
about 5 volts since the first nonzero term comes 
from the ria band. For bands 2 and 3, EKO-E~” 
is 0.88 volts at nitrogen temperature according to 
the optical absorption work of DASH and NEW- 
MAN. The lowest conduction band at K = 0 is 
assumed to be the I’,- band. For small k, the second 
term causes an appreciable error in the calculation 
of effective masses. The effective mass calculations 
are about 2 per cent too large for band 1, 10 per 
cent too large for band 2, and 20 per cent too small 
for band 3. These estimates are based on the 
assumption that we have started with the correct 
values of L, M, N. Since the values used are 
experimentally derived they essentially include 
this correction so that we estimate that the correc- 
tion to band 3 should be about 30 per cent and that 
bands 1 and 2 are reasonably accurate for small K. 

The arguments above do not imply any error 
in the formula 

E = AR+ [Bakq+C2(k,~k,e+k,Zk,~+k,~k,~)]~ 

(33) 

which has been given in DKK. This is the most 
general form for the energy surfaces and is per- 
fectly rigorous for small K, except for the possibility 
that Cr may be negative. The form follows from 
the requirements that the secular equation be a 
quadratic, that E be proportional to k2, and that 
the energy surfaces have cubic symmetry. The 
error arises in relating the quantities L, M, N to 
A, B, C. 

For large K the second term in eq. (32) becomes 
approximately -(E,I*l)“/AE where AE = 0.88 eV 

for band 3, 5 eV for band 1, and some average of 
0.88 and 5 eV for band 2. For large k the second 
term in eq. (32) becomes proportional to P. The 
third term is also proportional to k4 but appears 
to be less important than the second term because 
it involves states further from the valence band 
which have larger energy denominators. 

The first term in eq. (32) is a small correction 
to the spin-orbit splitting at k = 0. The lowest 
state having a matrix element QiK with the val- 
ence band is the upper rss+ state, about 18 volts 
above the valence band. If QjK is of the order of 
the valence band splitting, the first term in eq. 
(32) amounts to about 2 per cent of the first order 
splitting, A. 

Terms (4) and (5) in eq. (32) are proportional 
to ka times spin-orbit splitting hence they consti- 
tute an additional correction to the effective masses 
near k = 0. The largest contribution comes from 
term (5) and results fromsthe spin-orbit splitting 
of the rrS- band. If the r’s_ splitting is the same 
as the valence-band spli 4 ng, the fifth term will 
give a 6 per cent change in the effective mass of 
of the heavy-mass band. The per cent change will 
be smaller for bands two and three. 

The error in the theoretical procedure should 
be about 10 times smaller for silicon than for 
germanium because of the smaller spin-orbit split- 
ting. Unfortunately, the error in the cyclotron 
resonance constants is still appreciable for silicon 
and no experimental evidence is yet available which 
gives the value of the spin-orbit splitting accurately, 
though an estimate of 0.64 eV from the atomic 
splitting is probably not far off. 

4.oFrICAL MA* BJxMENls 

The optical transition probability in free carrier 
absorption from band i to bandj is proportional to 
(e/MI <ailA *P/U,) 1s in the case of direct transi- 
tions (i.e. transitions where k is conserved). The 
k of the light wave is negligible. The quantity A 
is the vector potential of the light. The momentum 
operator p has odd parity,‘hence it has no matrix 
elements between bands of like parity at k = 0. 
At k = 0, parity is a good quantum number in a 
cubic crystal. The k - p perturbation brings in a 
first order correction w&e function of parity 
opposite to the k = 0 parity of the band. The oper- 
ator A - p then has a matrix element between 
bands of like parity which is proportional to k. 



92 E. 0. KANE 

The periodic part of the wave function, correct to first order in the k * p perturbation is 

The matrix element of A *p between bands i and j is 

(e/r@ WA*Au~) = . 

VW4 7 
<%Jk*PlW) (sJIA*PIQ)+ <uoilA*~IW) (~~Ik*Pl~oj> 

Eio- .?.?j’ 
* (35) 

1. 
The right-hand side of eq. (35) is identical in 

form with the second-order k + p energy of eq. (5). 
Hence the matrix for the transition probability 
may be conveniently obtained by using the k *p 
part of the Hamiltonian matrix in eq. (21) (set 
d = 0). Eq. (35) indicates that the substitution 
k&,+A,k, should be made for k,k,,, and the 
matrix should be multiplied by the constant factor 
(e/c@. The resulting matrix F must then be further 
transformed to F’ = PFU by the unitary matrix 
U which diagonalizes the Hamiltonian of eq. (21). 
The optical transition probability is proportional 
to the square of the absolute value of the appro- 
priate. matrix element of A *p. In a cubic crystal 
this transition probability will be independent of 
the direction of A if we average over equivalent 
cubic directions. We define a quantity Wi j 

WasA = (4/27){L+M+(S,A)2L+(S22”)2M- 

-2(2)f(L-M)S,,AS,,A}2 (42) 

htzs” 
‘ssA = {(hss”)*+(EaA-h2,“)*}t 

S,,A = - 
h,*“- E2A 

{(hmA)2+(E2A-h22A)2P 

Wij = (h”/m2)1 &IA *pjuj)12/A2k2 (36) 

where we have averaged over the direction of A 
and summed over the two final states which are 
Kramers degenerate. We have obtained expressions 
for the matrix elements W ij in the (loo), (111) and 
(110) directions which will be denoted by Wi jd, 
WitA and Wijz respectively. 

For the (100) direction 

WI14 = (4/3)ML (37) 

W12A = ( 1/9){(2)tS2sA+ Sz,A}2N” (38) 

w,p = (1 /9)(Ss2A - (2)fS2,A}2Nd (39) 

wad = (4/27){L+M+(S,,A)2L+(S23A)2M+ 

+2(2)~(L-M)S,,AS,A}2 (40) 

W,A = (1/27)[9NL+4(L-M)2{S,,dS,“- 

-(2)t(~22A)2+(2)f(S23A)2}21 (41) 

kA = -{(2)*/3}(L-M)k2 (45) 

h,A = (2L+M)k2/‘3. (4.6) 

In the (100) direction the Hamiltonian of eq. (21) has 
r = 0. The matrix diagonalizing H is then 

RA=O;S4 _G &j.:. {L?] (47) 

The above 3 X 3 matrices are components of the 6 x 6 
matrix according to eq. (20). The elements SpoA, SIIIA 
can also be expressed in terms of the energy E,A. The 
energy E/ is the energy of band i in the (100) direction. 
Similarly, Ei” and Eiz refer to energies in the (111) 
and (110) directions respectively. 

For the (111) direction: 

WI/ = (4/27)(L+2M-N)2 (48) 

WI/ = (1/27)[2N”+4(L-M)2+ 

+{N”-4N(L-it4)}{(S,~)2+2(2)*S,aI’S,”}] 

(49) 

W-g’ = (1/27)[2Nz+4(L-M)*+ 

+{~2-4~(&M)~(S22”)2-2(2)+S&&/}] 

(43) 

(44) 

(50) 



We/ = (4~27)[L+~+~~(S~A)2- 

-2(2)*s,&3qp (51) 

?+‘,A = (1/27)[{2(L--M)+N}“+ 

+4NL(~~~S,II+(2)f(S~~)2-(2),(5,")2321 
(52) 

IF’& = (4/27)[L+2M+ 

+N{(S,“)2+2(2)*S,~~~~)12 (53) 

hd 

saB’” = ((hsg”)“+(Ee”-h&j~ 
(54) 
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W12z = (4~3k4~~~~~~~~~~)2+ 

+(~/9)(L--)2(~,,=S,,=-~,,=S,,~+ 

+ (2)*(S,,~~~,=--S,,rS,3}2+ 

+(ljl8)1VP((2)f(SII=~e2=-Sz~~~~z”)+ 

+(&,=s,+~~lrss,=+ 

+(3)*(S**=S,,“-S,,=S,?=)}2 (63) 

w,,z = (4/3k4)(ds&!T,q”+ 

+(1/9)(L--)“(s,,*s,=-~,=s~,=+ 

+(2)t(S,,=s~=--S,,=S,,=))e+ 

+(l/ls)N~{(2)*(s,,L~-S,,=S,,=)+ 

+ &Bz&IE- &,z~sr=+ 

+(3)t(S~~~~,~-S,=S,3)2 (64) 
h& = (2),Nk2/3 (56) 

hae” = (L+2M+N)ks/3. (57) 

In writing tbe matrix elements for the (110) direction 
we make the following auxiliary definitions. 

Sff’ = nfj/(n1,2+n,ft+n,,z)) (58) 

TZI~ = h,,4,r-h19’(hza”-Ej3 

nrtl = h,,~hls=-h~“(hll~-~~=) 

nsi = (h,,--E,)(h,d-Ej”)-_(h,2r)2 

(59) 

h,,= = (L+M)k2f2 

k,z = (L+5M)k2/6 

k,,’ = Nke/2(3)” 

hl3= = iVk”/(6)+ 

k,” = ~~-~)~13(2~~ (60) 

where- Ej" is the energy of band j in the (110) direction. 
The quantities W~J= can then be written 

300 

m_ 2OO 
E 

i? 
c 
. := 
s 

100 

0 5 l0 15 20 25xlcP 
ka bbmdc units) 

FIG. 6. Matrix elements form direct optical transitions 
in pgerm8nium. 
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w,, = (4/3k4){~S,,~S,,=>‘+ 

+(l/9)(L-M)2(S,2~s22~-s22rs,2=+ 

+ P>f(~12”W- ~22=w)~*+ 

+(1/18)N2((2)*(S,,rS2,=-~~2~~~=)+ 

+ S,3zs,,~--S,*zS,r+ 

+ (3)*(&12~S2+ &2zS22z)>2 

W2$ = (4/3k”){fl(s,=)*+J?$“}” 

(66) 

(67) 
A is the spin-orbit splitting. 

The quantities W13’, WI,“, W,,“, WI,” have 
been calculated. The results are plotted in terms 
of the dimensionless quantities Wij/(h”/2m)* in 
Fig. 6. The value of W,“/(ti”/2m)* was calculated 
to be 560 for K = 0. 

5. FREE-CARRLW ABSORPTION 

The free-carrier absorption of p germanium has 
been discussed by KAHN(~). In his treatment he 
made the parabolic band approximation. We shall 
extend hi analysis using the band calculations and 
matrix elements computed in this paper. 

The probability per unit time w for absorbing a 
photon is 

w = (2?7/ti)H1#) (68) 

where p is the density of states per unit energy. 
The transition probability can be related to the 
absorption constant, a, by the equation 

a = 2&i*cw/nEA* (69) 

where E is the energy of the absorbed quantum 
and n is the index of refraction. According to eq. 
(36) the matrix element squared is given by 

Hii2 = (e/&)“A*k* Wij. (70) 

The density of states is determined by the number 
of possible final states in the energy range 
d(E,-E,) where a hole is to be taken from band i 
to band j by a direct transition. The number of 
one electron states per unit volume in this range 
in band i is 

k*/n*[(dE,/dk)-(dE,/dk)] (71) 

for the case of spherical energy bands. To each 
occupied state in band i there corresponds a final 
state of the system in which the hole in band i has 
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been transferred to a state of the same k vector in 
band j. The density of final states is just the density 
of states in. (71) multiplied by the occupation 
probability. For Boltzmann statistics the density 
of states is 

P(E) = 
k*$e-E,*T 

m*N,I(dEJdk)-(dEJdk)l 
(72) 

NV = 2(kT/‘2rrli2)3’2(~13~2+;i;23/‘p) (73) 

where Ei and Ej are the energies in the bands i 
and j between which transitions are made. The 
concentration of holes is p; Er, iii, are the average 
masses of the two upper valence bands. A density 
of states factor of two for spin is included for band 
i but not for band j in eq. (72) since the latter 
factor of two has already been accounted for in 
computing Wi, by summing over the two Kramers 
degenerate bands of the final state. 

The equation for the absorption constant is then 

(74) 

Induced emission and absorption are both inclu- 
ded. The above formula applies only to the case 
of spherical energy bands and Boltzmann statistics. 

Band 1 to Band 3 Transitions 
The free-carrier absorption has been calculated 

for the (lOO), (ill), (llO), and (Y) directions 
separately as if one had spherical bands. A crude 
numerical integration is then effected by weighting 
the directions appropriately. The weighting was 
made by considering the surface of a sphere in 
k space and assigning a small element of area to 
whichever of the four computed directions it was 
closest. The weightings were then made propor- 
tional to the area and were normalized. The follow- 
ing approximate weights were determined: (loo), 
0.09: (ill), 0.16: (llO), 0.22: (Y), 0.53. 

The computations for the (lOO), (ill), and (110) 
directions include explicit evaluation of all quanti- 
ties given in eq. (74). For the (Y) direction, how- 
ever, only the Boltzmann factor and the energy 
appropriate to (Y) were used. The matrix elements 
and values of dE/d(k*) were taken to be the same as 
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&IG, 7. Theo&cd free-carr&er absorption in p-gcmmnium with 6 x 10’” holes. 

for the (110) direction. The computations of ab- 
sorption constant for the four direction8 are given 
in Fig. 7 for 77°K and 300°K. The weighted 
averages are compared with the experimental data 
of R. NEWMAI+O) in Fig. 8. 

For both 77°K and 300°K the peak theoretical 
values of absorption constant are about a factor of 
1.2 high. Since the theory contains no adjustable 
parameters this agreement is quite good. However 
the high-energy slopes show a significant discrep- 
ancy between theory and experiment for both 
300°K and 77*K. The source of the disagreement 
is thought to be the neglected higher-order terms 
in the perturbation expansion which will have the 
effect of bringing band 3 closer to bands 1 and 2. 
The effect of higher-order terms on band 3 will 
be much larger than the effect on bands 1 and 2. 
The experimental curve can be used to obtain a 
rough estimate of the correction which should be 
made to band 3. The theoretical curve is first 
divided by a factor of I ~2 so that both curves have 
the same peak absorption. Then the horizontal 
energy displacement which is needed to make the 
two curves superpose is taken to be the vertical 

energy displacement whioh should be added to 
band 3. A given absorption constant defines two 
values of I$-Es, a value A for the experimental 
curve and a value B for the theoretical curve. The 
correction A--B to band 3 is to be made at the 
point in k space where the band separation El-Es 
is equal to B. This procedure assumes that the 
correction to band 3 ia isotropic; it also assumes 
that the correction to band 3 will not alter the 
absorption computed for a given point in k space. 
The latter assumption is reabonable at 77°K but not 
too good at 300°K. 

The correction to band 4 is made for both 77°K 
and 300°K and is plotted in Fig. 1 for the (Y) 
direction. Idealiy, of course, the two corrections 
should coincide but actually there is a large dis- 
crepancy. A number of reasons which may contri- 
bute to the discrepancy can be cited, 

The theoretical curve at nitrogen temperature 
is very sensitive to the cyclotron resonance con- 
stants because of the Bohzmann factor in band 1. 
The magnitude of the uncertainty in the absorp- 
tion constant appears to be about a factor of 2 at 
0.6 eV according to the limits of error quoted by 
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DKK. The slope at nitrogen temperatures may be 
influenced by phonon induced indirect transitions. 
The electron-phonon interaction will mix a small 
amount of large k vector wave function into the 
small K states. The probability of making a high- 
energy transition due to this admixture of K vector 
is proportional to H2 (electron-phonon)/&a where 
EI is the large K energy in the upper valence band. 
For large E1 this indirect transition probability 
will eventually exceed the direct transition pro- 
bability which is multiplied by a Boltzmann factor 
~~1:~~. A rough estimate of this effect indicates 
that it may not be negligible. However, it would 
appear that such an effect should cause a change 
in slope of absorption vs. energy for large energies 
which is not observed experimentally. This effect 
would be in a direction to increase the indicated 
correction to band 3 at nitrogen temperature. 

The theoretical absorption at room temperature 
varies by less than a factor of 2 from O-4 eV to 
0.7 eV. This fact makes the computed correction 
to band 3 very sensitive to the value of the optical 
matrix element as a function of k. The computed 
matrix elements are influenced by the neglected 
higher-order terms just as are the band shapes. 
The direction of this effect is to reduce the indi- 
cated correction to band 3 at room temperature. 

The room-temperature correction to band 3 
would be changed somewhat by taking into account 
self-consistently the effect on the absorption of the 
correction itself. The direction of this effect is to 
increase the indicated correction. 

A temperature dependence of the band E, is 
indicated by the fact that the band gap at k = 0 
is significantly temperature dependent between 
77°K and 300°K as shown by the optical absorp- 
tion studies of DASH and NEWMAN( This effect 
would decrease the effective mass of band 3 by 
about 10 per cent in going from nitrogen to room 
temperature and is in the opposite direction to the 
apparent change inferred from the present method 
of correcting the E, band. 

In summary, no accurate method of determining 
the band Es has been found. The required altera- 
tions to theory are of the order of magnitude 
(b 30 per cent) to be expected from estimates of 
higher-order terms. Although 300°K and 77°K 
corrections do not agree, they appear to be recon- 
cilable in view of the uncertainties mentioned 
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data should be most accurate, particularly if the 
accuracy of the cyclotron resonance constants in- 
creases. 

Band-l to Band-2 Transitions 

The theoretical calculation of the free-carrier 
absorption at 300°K for transitions from band 1 
to band 2 is given in Fig. 8 for the (110) direction. 
The decrease in slope of E vs. k2 in band 2 for 
large k2 brings the absorption down sharply before 
0.23 eV where the experimental curve shows a 
minimum. The effect is even more marked for the 
(100) and (111) directions. In these directions, 
bands 1 and 2 become parallel asymptotically in 
the approximation of our calculations. The mini- 
mum separation of bands 1 and 2 is (2/3)4 or 
0.19 eV for both the (100) and (111) directions. 
Hence the absorption goes to zero at this point. 
The absolute magnitude of the theoretically com- 
puted absorption agrees quite well with the experi- 
mental value. 

Band-2 to Band-3 Transitions 

The approximation of direct transitions breaks 
down in the analysis of transitions between bands 
2 and 3. Since the slopes are equal at k2 = 4 x lo-* 
atomic units the density of states in the spherical 
approximation becomes infinite at this point. The 
absorption approaching the point at which the 
slopes are equal increases as (E-EJ-4. The inte- 
grated absorption J a dE remains finite. Any 
scattering mechanism such as phonons or impuri- 
ties which makes the k vector of an electron un- 
certain will broaden the infinite narrow spike 
associated with direct transitions and produce a 
finite peak. 

A source of broadening apart from indirect 
transitions is the fact that the surface in k space 
for which the slopes in bands 2 and 3 are equal 
does not coincide with the surface of constant 
energy separation. The maximum broadening to 
be expected from this source is only 1.5 x 10e4 eV 
which is far less than the experimental width of 
about 0.02 eV. 

In the range of 1016 carriers/cc the free-carrier 
absorption is independent of impurity concentra- 
tionoo) so that the broadening of the cr, band is 
not caused by impurity scattering. The most likely 
source of broadening appears to be lattice scatter- 

above. The correction to E3 deduced from 77°K ing. 
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FIG. 8. Theoretical free-carrier absorption compared with experiment for 6 x 1Ol3 holes. 
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The theoretical calculations of free-carrier ab- 
sorption for band-2 to band-3 transitions are shown 
in Fig. 9. The calculations were made for the (100) 
direction; the matrix element IV,, was calculated 
for k = 0 only, since the variation with k is not 
very important. The assumption of direct transi- 
tions causes a rapid rise in absorption on the low- 
energy side of the curve. This rise is shown in the 
200°K and 300°K curves. At 77°K the absorption 
falls to very low values before it rises again because 
of the infinite density of states. At 77°K the shape 
of the curve is not very sensitive to how the in- 
finite, narrow peak is broadened. At 300°K the 
shape of the curve is entirely dependent on how 
the broadening is treated so that the direct transi- 
tion approximation is of no value here. 

The experimental a, band is also shown at 
three temperatures in Fig. 9. The theoretical peak 
absorption at 200°K agrees roughly with the ex- 
perimental values. At 77°K the “2~ band has 
moved so close to the ais band that the bands are 
not clearly resolved experimentally, presumably 
because of phonon broadening. It is difficult to 
compare theory and experiment for this case, al- 
though the absorption appears to be significantly 
lower than expected from theory. 

For completeness the ass-band calculations are 
included in Fig. 8. The absorption is arbitrarily 
clipped, off at a peak value a factor of 1.2 above 
the experimental value. 

A comparison of theory and experiment indi- 
cates that the spin-orbit splitting should have been 
taken as 0.29 eV. The or, peak at 200”K, the ais 
peak at 77”K, and the trough between the al3 and 
a, peaks at 200°K all show this clearly. The most 
significant indication of the spin-orbit splitting is 
the trough between the ai3 and apg peaks at 200°K 
since the trough should occur quite accurately at 
the value d. The calculations have not been cor- 
rected for this revised estimate of the splitting. 
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APPENDIX: DEGENERATE PERTURBATION 
THEORY 

Two Perturbations of Different Order 
If two perturbations are of different orders of magni- 

tude they should clearly be assigned different powers 
of the expansion parameter A in making a perturbation 
expansion. In the nondegenerate case, a different assign- 
ment of powers of x merely results in a reordering of the 
terms of the perturbation series. In the case of degener- 
ate perturbation theory, different powers of h result in 
essentially different terms in the perturbation expansion. 

Let us consider the particular case of two perturba- 
tions, P and Q, where P removes degeneracy in second 
order and Q removes degeneracy in first order. If 
~Jr~gPgj(&o--E~o)-l is of the order of Q,j, then 
a 
clearly we should write hP+h*Q in making a perturba- 
tion expansion. Then both perturbation matrices will 
be diagonalized together in determining the correct un- 
perturbed function set. Convergence is never impaired 
by this procedure even when % P~KPKj(Ei”--EKo)-’ is 

actually much smaller than Qrr. 
We give the formulae for the energies up to fourth 

order fir this case assuming Pi i = 0 so that the first- 
order energy vanishes. 

&I’1 = 0 (Al) 

E,rzl = Qii+ 
c 

PiKPKi 

K E+E# 
(-42) 
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E,Isl = 2Re 
c 

QiKPKi + 

K EF--EK” 
+ 

, K,(EF-EL’)(EP_EK’)(EF-EJ”)+ c 

PilPLKPKJPJi 

9 7 

PiLPLKQKi 
+ 

PrJpJKpKi 
643) +2Re 

(E?-EJ”)(Eio-EKO) (Ei”-ELo)(E~-EKo~ 

,‘$41 = 

c 

QfKQKt _E121 
c 

PiKPKi 

K Ei”-EK” ’ K (EF-EK”)’ 
+ + 

c 

PiKQKJPJi 

J,K 
(Ep-EKo)(EF-EJ”)+ 

c 

I 

+ 
PiLpLMhfkpkKPKJPJi 

R J K L ,(Ei’-EL”)(Eio- E~“)(E~o-EKo)(Eio- EJO) ,I]-Ed’))’ 
9,) * 

I 
+2Re 

c 

QISLKP~KPKJPJ~ 

k,J,K.L 

c 

, 
+2Re 

Pi LQL~I KPKJPJS 

(EiO- EL”)(Eio- EK”)(Ep-EJ”)(E~“-Ek’81)’ 
k,J,K.L 

c , +2Re 
PiLQdkKQKi 

k K,L (E~“-ELo)(E~-EK”)(EJ~l- E&i])’ 
, 

+ 
QILPLIPMQKI 

(Ei”-ELo)(Eio-EK’)(E,IOI-E~“)’ 

c 

, 

+ 
PiLQLkQXKPKi 

k KL (E,“-ELo)(Eio-EKO)(Ei[2]-EE,crslj (A4) 
I 1 

Capital indices J, K, L index states not degenerate 
with the state i under conside@ion. Indices j, k, I refer 
to states which are degenerate’with i in the unperturbed 
problem. Primes on the summation signs indicate that 
the term i = j is omitted. tie unperturbed function 
set haa been determined by tk requirement 

c pi KPK* 

K Ei”-EK” 
+IQiir =0 i#j. 

Similar formulae are discussed in COND~N and 
sHoRTLEY(“). 


