Lecture 1- Introduction to Fiber Optics

Fiber-Optic Network Applications

Network Classification

Public Networks

Enterprise Networks

Evolution of Fiber-Optic Point-to-Point Transmission

Multimode fiber-optic waveguides >5dB/km attenuation	Low loss Single mode optical fibers 1 dB/km @ 1310 nm Early 80s		Operation in the low loss window of 0.2 dB/km @ 1550 nm but high dispersion @ 1550 nm Mid to Late 80s		Multichannel erbium doped fiber amplifiers (EDFAs) @ 1550 nm deployed. Late 80s to Early 90s		AT&T True Wave Fiber an Corning Large Optical Core Fiber reduce fiber FWM	nd e
Early 70s Room temperature GaAs LEDs and multimode FP Lasers @ 830 nm		Multimode Fabry-Perot 1310 nm lasers	Development of single frequency DFB 1310 nm and 1550 nm lasers New disp shifted fi yields Ze dispersio 1550 nm 0.5 dB/ki @ 1310 n		ersion ber Mu ro WI n @ nm and cha m loss cha nm lim fou (Fv		90sMid 90sichannel M @ 1550Optical Soliton dispersion compensationNumber of nels and nel spacing ted by fiber -wave mixing VM)Mid 90s	Mid 90s Optical Solitons, dispersion compensation
1st Generation	2	2nd Generation	3rd Generatio	4th Generation			5th Generation	

ı.

Transmission Bandwidth Evolution

Capacity and Repeater Spacing

Evolution of Fiber-Optic Networks

Point-to-point fiber links connected to electronic switching equipment	High performand data communication Serial HIPPI standard introdu fiber at 1.2 Gbp Fiber Channel standard introdu Marce 404 e96	ce s. iced, s. iced 800	Introduction of Optical Channel (OC) layer by the ITU. Routing in the optical layer.		Optical wavelength conversion. Optical regeneration. Optical packet switching. Late 00s
Late 80s First MANs. 100 Mbps FDDI and 200 Mbps ESCON for data communications. SONET and SDH for Telecommunications.	Mops.	Layered Networking. ATM and IP over SONET.	Late 90s Fixed wavelength add/drop multiplexing. Protection and survivability in the optical layer.	0	
1	lst Generation		2nd Ge	3rd Generation	

1.2 Basic Fiber Optic Link and Multiplexing Techniques

Basic fiber point-to-point link

- Multiplexing is the technique used to carry several different information channels on a common physical medium. The four alternatives are:
 - ⇒ Time Division Multiplexing (TDM)
 - Frequency Division Multiplexing, indicated as "Wavelength Division Multiplexing" (WDM) in optics
 - ⇒ Space Division Multiplexing (SDM)
 - ⇒ Code Division Multiplexing (CDMA)
 - ⇒ Multilevel coding

 \Rightarrow Time Division Multiplexing (TDM)

⇒ Wavelength Division/Subcarrier Multiplexing (WDM/SCM)

Other Multiplexing and Coding Techniques

- ⇒ Space Division Multiplexing:
 - \Rightarrow use of several fibers belonging to the same bundle
- ⇒ Polarization Multiplexing:
 - Using orthogonal states of polarization in fiber to transmit independent data streams
- ⇒ Code Division Multiplexing
 - Initially known as spread-spectrum, a particular kind of multiplexing based on the product between the useful signals and orthogonal pseudorandom sequences (mostly used in RF/wireless applications, like in third generation wireless phone)
- ⇒ Multilevel Coding
 - ⇒ Bandwidth efficient way to increase channel bit-rate without requiring more modulation bandwidth.

Fiber-Optic Network Applications

Transmission Bandwidth Evolution

Evolution of Fiber-Optic Point-to-Point Transmission

Multimode fiber-optic waveguides >5dB/km attenuation	Low loss Single mode optical fibers 1 dB/km @ 1310 nm Early 80s		Operation in the low loss window of 0.2 dB/km @ 1550 nm but high dispersion @ 1550 nm Mid to Late 80s		Multichannel erbium doped fiber amplifiers (EDFAs) @ 1550 nm deployed. Late 80s to Early 90s		AT&T True Wave Fiber an Corning Large Optical Core Fiber reduce fiber FWM	ıd ?
Early 70s Room temperature GaAs LEDs and multimode FP Lasers @ 830 nm		Multimode Fabry-Perot 1310 nm lasers	Development of single frequency DFB 1310 nm and 1550 nm lasers	New dispersion shifted fiber yields Zero dispersion @ 1550 nm and 0.5 dB/km loss @ 1310 nm		Mid 90s Multichannel WDM @1550 nm. Number of channels and channel spacing limited by fiber four-wave mixing (FWM)		Mid 90s Optical Solitons, dispersion compensation
1st Generation 2nd Generation		3rd Generation		4th Generation		5th Generation		

ı.

DWDM Link Evolution

Basic Fiber Optic Point-to-Point Link

<u>Block Coding</u> •Error Correction •Redundancy •Overcome noise and transmission impairments •E.g. FEC, Turbo -Codes <u>Line Coding</u> •DC balance •Redundancy •E.g Manchester Codes

ECE 228A Fall 2007Daniel J. Blumenthal

Link Capacity and Spectral Efficiency

- Capacity of an optical communications channel is the maximum bit rate that can be transmitted without error for a given noise, bandwidth and power.
- Capacity can be calculated independent of modulation, coding or decoding technique
- For a WDM (Wavelength Division Multiplexed) optical communications system

S = Spectral Efficiency = $\frac{\text{Capacity per Channel}}{\text{Channel Spacing}} = \frac{C}{\Delta f} = \frac{\text{Bits/Second}}{\text{Hz}}$

Signal to Noise Ratio (SNR)

Optical Modulation Basics

Modulation Basics (I)

⇒ Define

- \Rightarrow R_b = bit rate = bits/second
- ⇒ R_c = added redundancy per bit to improve SNR = baud = symbols/second
- \Rightarrow B = occupied bandwidth per channel
- \Rightarrow M = number of points in signal constellation
- ⇒ Binary Modulation
 - \Rightarrow One bit per symbol
- ⇒ Non-Binary Modulation
 - \Rightarrow More than one bit per symbol
- \Rightarrow No inter-symbol interference (ISI)

 $\Rightarrow R_s \leq B$

 \Rightarrow Error correction

$$\Rightarrow R_c \leq 1$$

 \Rightarrow No error correction

$$\Rightarrow R_c = 1$$

Information bit rate per channel in one polarization state

 $R_b = R_s R_c \log_2 M$

Binary Intensity Modulation

⇒ The primary modulation format used for commercially deployed optical systems are intensity modulation (optical power modulation)

Optical spectrum for intensity modulation

- If the intensity modulation is imposed to the optical signal together with unwanted phase or frequency modulation (e.g chirp under direct laser modulation, excess laser phase noise)
 - \Rightarrow The resulting optical spectrum is larger than the bit rate
- ⇒ If the modulation is a (nearly) pure intensity modulation, without any accompanying phase/frequency shift (e.g. external modulation)
 - The resulting spectrum has a primary lobe that occupies the order of the bit rate

Coherent Binary Modulation

Binary Signal Constellations

Two-Level PSK

$$\begin{split} M &= \text{average power in 1 bit} \\ \sigma_0 &= \text{variance of signal independent noise} \\ P_s &= \text{average signal power} \\ P_{LO} &= \text{average local oscillator power} \\ T &= \text{bit period} \end{split}$$

Quadrature Multi-Level Modulation

- Both optical phase and amplitude can be used to code symbols per bit
- ⇒ N-ASK is N-level amplitude shift keying (generalization of ASK): along amplitude axis
- ⇒ N-PSK is N-level phase shift keying (PSK): along phase axis
- N-QAM is quadrature amplitude modulation:
 2D in amplitude and phase
- ⇒ Receiver must isolate one point in constellation per bit
- Noise makes more difficult to isolate symbol (SNR)
- ⇒ 2-D space can be increased to 3 and 4-D by allowing temporal modulation of phase and amplitude

