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Lecture 13 - Optical Photodetectors 
and Receivers
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Reading and Homework

  Read Chapter 4 of Agrawal
  Homework

  Chapter 4 Problems 4.1, 4.2, 4.6, 4.7, 4.11, 4.12, 4.13, 4.15
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Detection of Optical Signals 

  Thermal: Temperature change with photon absorption
  Thermoelectric
  Pyromagnetic
  Pyroelectric
  Liquid crystals
  Bolometers

  Wave Interaction: Exchange energy between waves at different frequencies
  Parametric down-conversion
  Parametric up-conversion
  Parametric amplification

  Photon Effects: Generation of photocarriers from photon absorption
  Photoconductors
  Photoemissive
  Photovoltaics
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Photoconductors

Ec

Ev

Ephoton = hν

• Incident photon Ephoton= hν= Ec - Ev

e-

h+

➱   Photon absorption in semiconductor materials.
➱  Three main absorption mechanisms: Intrinsic (band-to-band), Free-Carrier Absorption and 
Band-and-Impurity Absorption
➱  Intrinsic (band-to-band) is the dominant effect in most SC photoconductors

Intrinsic (band-to-band) Free-Carrier Absorption Band-and-Impurity Absorption

Ec

Ev

Ephoton = hν
e-

h+
Ec

Ev

Ephoton = hν
e-

h+
Ephoton = hν

Donor Level 
Acceptor Level 
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Photoconductors

➱   For intrinsic absorption, photons can be absorbed if 

λ(µm) > hc
Ec − EV

=
1.24
Eg (eV )

λ(nm) > 1240
Eg (eV )

Material Bandgap (eV) Maximum λ (nm) Typical Operating Range (nm)

Si 1.12 1110 500-900

Ge 0.67 1850 900-1300

GaAs 1.43 870 750-850

InxGa1-xAsyP1-y 0.38-2.25 550-3260 1000-1600
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Photoconductors

➱   Power absorbed by the semiconductor is

➱   defining the efficiency

Ephoton = hν Semiconductor

Pi

x

Pi(1-R) Pi(1-R)e-αx

1/α

➱   Define:
➱  Pi = incident optical power
➱  R(λ) power reflectivity from input 
medium to semiconductor
➱  α(λ) = 1/e absorption length
➱  1/ α(λ) = penetration depth

Pabs (x) = Pi (1− R)(1− e
−α (λ )x )

= η(λ, x)Pi

η(λ, x) = number of photocarriers produced
number of incident photons

= (1− R)(1− e−α (λ )x )
0 ≤ η(λ, x) ≤ 1
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Photoconductive Photodetectors
  Photogenerated current will have time and wavelength dependence

M
etal Semiconductor

M
etal

+

Vbias

iphoto

Pi
iphoto(t) =

ηq
hν
GPrcvd (t) + idark

τ carrier =  mean free carrier lifetime
τ transit =  transit time between eletrical contacts

G =
τ carrier
τ transit







=  photoconductive gain

idark =  dark current

  The transit time for electrons and holes can be different and in many SCs the eletron mobility is greater than 
that of the hole

υe = µeE > µhE = υh

  The SC must remain charge neutral, for every electron generated, 
multiple holes will get pulled in until the photogenerated electron 
reaches the other contact. The carrier and transit times are limited by 
the slower carrier and the photoconductive gain is given by the ratio of 
the transit times

τ carrier =
La
υh

τ transit =
La
υe
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Photoconductive Photodetectors 

  The carrier velocity is a linear function of electric field strength up to a saturation velocity (which is the same for both 
electrons and holes)
  Field strength of about 105 V/cm result in velocities in range of 6x106 to 107 cm/s
  Some materials have an electron drift velocity that peaks at 2x107 cm/s at 104 V/cm 

  When photoconductive gain is desirable, detector is operated at low voltages
  Carrier lifetime also impacts the frequency response of the photoconductive photodetector 

iphoto(ω ) = ℜG Prcvd (ω )

1+ ω
ω c








2

ω c =
1

τ carrier
= cutoff frequency
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Pn Junction Photodetectors

  Photons absorbed within the junction diffusion length generate carriers 
that are swept down the barrier (drift current) adding to the thermal 
generation current (dark current) that is present in the absence of light.

  The semiconductor bandgap energy sets a lower limit on the frequency 
of light that can be absorbed, hence generating photocarriers. 
  Light with energy hn < Eg will not be absorbed and will not contribute 

to photocurrent
  Light with energy hn >> Eg will be absorbed away from the 

  The quantum efficiency and therefore the responsivity are wavelength 
dependent



ECE 228A Fall 2008 Daniel J. Blumenthal 13.10

Biased p-n Junction Photodiodes

P-type : Semiconductor doped with acceptor atoms
N-type : Semiconductor doped with donor atoms
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p-n Junction Photodiode Equation

I = (Is )[exp
qVbias

KBT −1]− I photo
= Idark − I photo

•  Idark = is the current that occurs with zero optical input
• Is = Ith is the thermal or saturation current that occurs in normal (non-
illuminated) diode operating mode
•  Iphoto is photo-generated current = 
•  q is the electron charge
•  Vbias is applied bias voltage ( positive = forward, negative=reverse)
•  KB is Boltzman’s constant
•  T is temperature (usually in Kelvin, depending on units of KB )

 p-type n-type

Vbias

ηq
hν

Prcvd
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p-n Junction Photodiode Regions of Operation

Vdiode

Reverse bias VRB

Idiode

0P

1P

I0 ≅ ℜP0

I1 ≅ ℜP1

Forward bias VFB

Photoconductive 
Operation

Photovoltaic 
Operation

VbiasZero light, 
electrical 
only

Increasing 
optical power

Increasing 
optical power
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Discrete Train of Random Events
•  For a time-dependent random variable made up of individual events occurring at discrete 
times f(t-ti), the events observed over a time interval T  and its Fourier transform can be 
described by

i(t) = f (t − ti ),     0 ≤ t ≤ T
i=1

NT

∑

IT ω( ) = Fi ω( )
i=1

NT

∑

Fi ω( ) = 1
2π

f (t − ti )e
− iω tdt =

−∞

∞

∫
e− iω ti

2π
f (t)e− iω tdt

−∞

∞

∫ = e− iω ti F ω( )

•  

IT ω( ) 2 = F ω( ) 2 eiω (ti − t j )
j=1

NT

∑
i=1

NT

∑

= F ω( ) 2 NT + eiω (ti − t j )
j

NT

∑
i≠ j

NT

∑







•  If we take the magnitude square of the Fourier Transform
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Discrete Train of Random Events

•  

IT ω( ) 2 = NT F ω( ) 2 = NT F ω( ) 2

•  The last term averages out to zero for a large ensemble of random events

Si ω( ) = 4πN F ω( ) 2

Si ν( ) = 8π 2N F 2πν( ) 2

•  The spectral density is defined by

•  Where the result Si(ν) is known as Carson’s Theorem
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Photon Statistics
  Photon sources can in general be characterized as coherent or incoherent†

  Coherent: Probability that a photon is generated at time t0 is mutually independent of probability of photons generated at other times (Markov 
Process)
  Poisson Process: Probability of finding n photons in time interval T

  Bunching is a trait of the Poisson process
  Interarrival time is decaying exponentially distributed

P(n |T ) = (rT )
n e−rT

n!

t
T

Where :
P(n|T) is probability of finding n photons in time interval T
R is mean photon arrival rate (photons/second)

† Can also be a 
combination of these 
two types -> partially 
coherent
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Photon Statistics (II)
  Narrowband Thermal (Gaussian):

  Bose-Einstein Process: Probability of finding n photons in time interval T

P(n) = 1
1+ nb







nb

1+ nb








n

t
T

Where :
P(n) = probability of finding n photons given
     nb = mean number photons from incoherent source = N0/hv0
    N0 = spectral density of source = Popt/B0
    Popt = total optical power from source
    B0 = source optical bandwidth
     T = observation time ≤ 1/B0
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Detecting Photons (1)

  Any material that can respond to single photons can be used to count photons
  Ideal Detector

  Generation of a electron-hole pair per absorbed photon results in an instantaneous current pulse 

t

T

t

Input photons hν

Photo-generated current i’(t)

Ideal 
Detector

hν i’(t)
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Detecting Photons (2)

  Real Detector
  Has an inherent “impulse response,” hd(t), due to built in resistance and/or capacitance.
  Can be modeled as an RC filter with low pass response 

t

T

t

Input photons hν

Observed photo-generated 
current i(t)

Ideal 
Detector

hν i’(t) Hd(ω) = FT {hd(t)} i(t)

Area = q = hd (t)dt
−∞

∞

∫
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Detecting Photons (3)

  As the average photon rate increases, the observed photo-current starts smoothing out, with a 
variance around the mean (average) count that is based on the statistics (which tends to 
Gaussian  for large photon arrival rate)

  P(i) is the probability function of measuring the current at a certain value at time t.

t
i

2σ
<Idc>

Ideal 
Detector

i’(t) Hd(ω) = FT {hd(t)} i(t)

T

P(i)
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Detecting Photons (4)

  The detector output current i(t) can be modeled as a discrete “filtered Poisson” process

i(t) = hd (t − τ j )
j=1

N

∑

  Where hd(t) is PD impulse response, N is total number e-h pairs generated, τj is the random time the 
jth photocarrier is generated.

  Define: Quantum Efficiency (QE), unitless, as

η =
number of photocarriers produced

number of incident photons
, 0 ≤ η ≤ 1

  Define: Time varying photon rate parameter (λ(t)) in units of photocarriers/second as

λ(t) = η
hυ

Precvd (t)
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Detecting Photons (5)

  The power incident on a photodetector of area A, in units of Watts, is

 
P(t) = I( rp,t)dA

A
∫

  where the instantaneous optical intensity at an observation point p is given by  
rp

 
I( rp,t) = 1

Z0
E( rp,t) 2

  The time varying photon rate parameter λ(t) can then be written in terms of P(t)

λ(t) = η
hν

E(t) 2

Z0
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Detecting Photons (6)

  If we consider an observation interval, over which we are going to average our photon count over
  This can be due either to the inherent bandwidth of the detector or (as we will see later) on purpose to match the 

receiver bandwidth to the data bit rate
  Then the number of photocarriers generated over the interval T counted at the jth observation interval

N j = λ j (τ )dτ
0

T

∫
  Assuming a coherent source, the conditional inhomogeneous Poisson process describes this photon count during the jth 

observation interval

P(N j = N ) =
λ j (τ )dτ

0

T

∫







N

N !
e − λ j (τ )dτ

0

T

∫
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Detecting Photons (7)

  If we assume a constant rate parameter over the time interval T (independent of j), then the photo-
generated current can be written as i(t) = λ(t)q

λ(t) = N
T

  Then the photocurrent produced by the photodetector can be written in Amperes, assuming the observation 
time is normalized to one second

i(t) = λ(t)q = ηq
hν

Prcvd (t)

= ℜPrcvd (t)
  Where we have defined the detector responsivity as

ℜ =
ηq
hν
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Photodiode Frequency Response
  The ability for the photocurrent to keep up with various modulation frequencies of the optical signal is an 

important metric in signal and data recovery
  There are three main effects that limit the detector frequency response

  Finite diffusion time of photocarriers produced in the p and n doped regions of a pn-junction photodiode.
  RC time constant associate with the pn-junction capacitance
  Finite transit time of photocarriers drifting across the depletion layer
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pn-Junction Carrier Dynamics
  Carrier diffusion time (~ns/µm) is typically much longer than carrier transit time (~10ps/µm)
  Electron and hole velocities saturated in depletion region due to high field strength
  Once away from depletion region carrier velocities fall below saturation
  Space charge barrier prevents carriers from entering the depletion region, therefore the multiple carrier effect seen in 

photoconductors does not occur when carrier velocities are mismatched

Depletion

νe
νh

hν νe

νh
hν

Depletion Depletion

νe
νh

hν νe

νh

hν

Depletion

i

t
ld
νe

0

i

t
0

i

t
0

q
q q

i

t
0

q
ld
νe

ld
νe

ld
νe
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pn-Junction Carrier Dynamics
  Photons absorbed within one diffusion length outside the depletion region will be absorbed and the current 

contributing carriers will suffer both diffusion time and transit time delays
  Effect is geometry and material dependent

Popt

t

i

t

Diffusion tail

 p-type n-type

h diffusione diffusione drift

h drift

Ie,diffusion + Ih,diffusion+ 
Ie,drift+ Ih,drift

i

ω

ηDC

ωD ωt

ηAC

iphoto(ω ) =
ηDC −ηAC

hν
Prcvd (ω )

1+ ω
ωD








2
+
qηAC

hν
Prcvd (ω )
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pn-Junction Carrier Dynamics
  The separation of charge in the depletion region (due to uncompensated Donors and Acceptors) leads to a 

capacitive effect that also impacts the detector bandwidth

Cj =
ε0εrA
ld

ε0 = 8.85 x 10-12 F/m = vacuum permitivitty
εr = semiconductor relative permitivitty
A = area of depletion region
ld = depletion region length

  The frequency at which the detector bandwidth rolls off by 3-dB due to the junction capacitance is

 p-type n-type

ld

-
-
-
-
-
-

+
+
+
+
+
+

Uncompensated Acceptors and Donors

ωRC
1

RSCj

Cj  = area of depletion region
ld = depletion region length
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p-i-n Photodiodes
  To increase the photon absorption region, a layer of intrinsic semiconductor 

material can be added beteween the p and n material.
  The pin photodetector gain-bandwidth product improves of the pn-junction

  The detector quantum efficiency can be increased over that of a simple pn 
junction since the depletion region is almost entirely contained in the intrinsic 
region and the intrinsic region can be made long.

  Carrier diffusion effects minimized since all light absorbed in intrinsic region
  The junction capacitance is reduced compared to a pn-junction because the 

distance between the effective plates is increased.
  Carriers reach saturation velocity while traveling in intrinsic region, so even 

though pin depletion length lp + ld is longer than pn-junction depletion length, 
lower transit time than pn-junction where carrier velocity drops below 
saturation not far from metallurgical junction
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p-i-n Photodiodes
  As with the pn-junction, the quantum efficiency is defined by the following equation, however the distance 

can now be integrated over the larger intrinsic region

Pabs (x) = Pi (1− R)(1− e
−α (λ )x )

= η(λ, x)Pi

  As the depletion region length is increased, η increases, the junction capacitance Cj decreases, and the 
transit time τtrans increases. The detector design must be optimized to maximize both efficiency and 
bandwidth. An estimate of the bandwidth is given by 

Bpin =
1

1
fRC








2

+
1
ftrans








2
=

1

2πRSε0εr
A
ld








2

+
1

0.44ν s








2
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Bandwidth-Efficiency Tradeoffs in 
p-i-n Photodiodes
  The quantum efficiency, η, can be approximated assuming R=0 (high quality anti-

reflection coating) and intrinsic region length ld.
  For small l, bandwidth is transit time limited
  For large l, bandwidth it RC limited
  Optimal bandwidth length where two effects are equal
  QE keeps increasing with increased length

η = 1− e−α ld

  If the detector area A and length ld are both optimized, then bandwidth and 
quantum efficiency can both be maximized 

A =
ld

2πRlε0εr

1
B2

−
ld

0.44ν s








2

ld = −
1
α
ln 1−η( )
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Vertically Illuminated p-i-n 
Photodiodes

InP

n- InGaAs

InP

InP

p

i

n

n+

p-contact and reflector

Lightly doped n 
material for 
intrinsic

AR coated facet

  For a double pass vertically illuminated pin detector 
(see left figure), the quantum efficiency is 

  When the carrier transit distance is approximately 
equal to l, and αl << 1, the bandwidth-efficiency for a 
double-pass vertically illuminated pin photodiode is 
approximately

l

η = 1+ re−α l( ) 1− e−α l( )
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Optical Detection and Noise
•  We turn our attention to converting optical signals to electrical signals

•  We want to understand the physical mechansisms that govern “photodetection” and how 
well the signal is recovered

•  One of the primary ways a signal gets degraded is when noise gets added to the information 
modulation on the optical signal, so we need to understand the different noise sources and 
how they interact with signal detection

•   Noise impacts an optical system in the following ways

•  Measurement: Noise causes random fluctuations in the detected signal and limits the 
smallest power that can be detected accurately. This noise is generated in the detection 
devices and systems.

•  Generation: Noise is present in optical sources which will interfere with the accurate 
measurement of optical signals using a photodetector.

•  Amplification and Transmission: There is noise in the process of trying to increase the 
level of a signal using optical or electrical amplifiers. The medium used to transmit 
signals (e.g. optical fiber) can also manifest certain types of noise.



ECE 228A Fall 2008 Daniel J. Blumenthal 13.33

Limitations due to Noise Power
•  The signal and additive noise can be represented in either the time domain or using phasor 
notation as shown below.

•  Let Vs be the magnitude of a sinusoidally modulated signal vs(t) oscillating at ω: vs(t)= 
Vscos(ωt). 

•  Let the noise be additive to the signal in both amplitude and phase and represented by an in-
phase component VNC(t) and a quadrature component VNS(t). Also assume These noise 
components vary slowly w.r.t. cos(ωt).

•  The total signal in phasor notation can be written as v(t) = Re VS +VNC (t) − iVNS (t)[ ]eiω t{ }
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Effect of Noise Sources
•  Since noise is due to many different random events that act independently,  we can invoke the central 
limit theorem to describe the probability distribution for the amplitude and phase of both the real (in-phase) 
and imaginary (quadrature) noise components.

•  This additive randomness in amplitude and phase creates a sort of “bullseye” pattern where the vector v(t) 
has a probability landing as its “average” is spinning around the imaginary plane at frequency ω. 

•  For a large number of random independent events, we can utilize the central limit theorem and describe 
the noise using Gaussian statistics with variance σNS and σNC and averages <VNS> and <VNC>

v(t)

2σNS
2σNC

Im{v(t)}

Re{v(t)}

ρ(VNC ) =
1

2πσ NC

e
−VNC

2

2σNC
2

ρ(VNS ) =
1

2πσ NS

e
−VNS

2

2σNS
2

σ NC
2 = VNC

2 = VNC
2

−∞

∞

∫ ρ(VNC )dVNC

σ NS
2 = VNS

2 = VNS
2

−∞

∞

∫ ρ(VNS )dVNS
VNC (t) = VNS (t) = 0
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Noise Power
•  The average power associated with the signal and noise is given by the following, which can be 
reduced by assuming the variance of the in-phase and quadrature components are equal (σNC = σNS )

P = P(t)

=
1
2
V (t)eiω t( ) V ∗(t)e− iω t( )

=
1
2
VS
2 + 2VSVNC +VNC

2 +VNS
2( )

=
1
2
VS
2 +VNC

2 +VNS
2( )

=
1
2
VS
2 +σ NC

2 +σ NS
2( )

=
1
2
VS
2 + 2σ 2( )
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Noise Power
•  When measuring the power, there is an uncertainty due to the noise components, which can be 
described by a deviation in the average power ΔP(t)

•  Using the rms values 

•  
•  And defining the signal power PS as the power measured in the absence of noise and converting to 
Gaussian variance

P(t) = P + ΔP(t)

ΔP = P(t) − P( )2





1
2

ΔP = σ 2PS +σ
2( )
1
2


