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Lecture 3 - Wave Propagation in
 Dielectrics and Basic Dielectric
 Properties 
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Maxwell’s Equations


 

∇× h = i + ∂d
∂t

∇× e = −∂b
∂t

∇ •d = 0

∇ •b = 0

where e and h are the electric and magnetic field vectors

d and b are the electric and magnetic displacement vectors

No free charge.
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Constitutive Relations


 

d = ε0e + p

b = µ0 (h +m)

p and m are the electric and magnetic polarizations of the medium

ε0 and µ0 are the electric and magnetic permeabilities of vacuum

e and h are the electric and magnetic field vectors

d and b are the electric and magnetic displacement vectors
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Electric Susceptibility χ (Isotropic)


P = ε0χijE
Isotropic Media: χ is a complex number


The real part determines the index (velocity) and the
 imaginary part determines the gain or absorption.


Isotropic media: Vacuum, gasses, glasses (optical fibers)

Anisotropic media: Semiconductors, crystalline materials.
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Electric Susceptibility χ (Anisotropic media)


 

P = ε0χijE

Pi = ε0∑ χijE j

Px = ε0 (χ xxEx + χ xyEy + χ xzEz )

Anisotropic Media: χ is a complex second rank tensor


One can always choose a coordinate system such that off
 axis elements are zero.  These are the principal dielectric
 axes of the crystal.  We will only use the principal
 coordinate system.
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Principal Axes


 

D = ε0E + P

D = εE
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D, E and P are not parallel in general.  D and E are related by
 the electric permeability tensor ε


Principal axes can always be chosen such that D and E are parallel

and the off diagonal elements of ε are zero.
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Wave Propagation in Lossless, Isotropic Media


  Lossless: σ=0, χ is real, ε is real.

  Isotropic: χ, ε are scalors (not tensors).


 

∇× e = i + ∂b
∂t

= 0 +µ ∂h
∂t

∇× h = i + ∂d
∂t

∇× (∇× e ) = µ ∂(∇× h )
∂t

= µ
∂2d
∂2t

= µε
∂2e
∂2t

∇× (∇× e ) = ∇2e −∇(∇ • e )

∇2e = µε ∂
2e
∂2t Wave Equation
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Wave Equation


 

e (x, y, z,t) = Re[E(x, y, z)eiωt ]

∇2E +ω2µεE = 0

∇2E + k2E = 0
where

k =ω µε =ωn / c

c =1 / µ0ε0

n = µε
µ0ε0
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Radiation and Atomic Systems


  Chapter 5, Yariv

   In a dielectric material, an incident optical E-field oscillating at frequency w will induce physical displacement of a

 bound electron from its rest state at the same oscillation frequency. We call the the induced dipole moment or
 displacement


Incident Optical E-Field Ei


+

-
 +


-


-


-
E0


φ0

Displacement during + cycle


Displacement during

 - cycle


Rest


Output Optical E-Field


αE0


φ0- φ
 φ0


α  is field attenuation
p is the induced dipole moment
αp  is the atomic polarizability
φ0  is the input field phase reference
φ  is the output field phase

p


p


p = α pEi
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Dielectric Constant and Index of Refraction

  For a homogeneous material of N atoms per unit volume, the polarization is defined by the contribution of

 all atoms in that volume that interact with the optical E-field


P ≈ Np = Nα pEi ≡ ε0χeEi

  Where we have defined the vacuum permittivity ε0 and material electric susceptibility  χε  by 


Nα p ≡ ε0χe

  Using the constitutive relation D=εE= ε0E+P, the dielectric constant is defined as


ε = ε0 +
P
E
= ε0 + ε0χe = ε0 1+ χe( )

= ε0 1+
Nα p

ε0






  And we can now define for a non-magnetic medium (which dielectrics are at optical frequencies), the
 optical index of refraction n


n2 = 1+ χe = 1+
Nα p

ε0

n = 1+ χe = 1+ Nα p
ε0
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Classical Electron Model


  Now we need a basic model that describes the motion, or displacement of the electron (dipole) in the presence of an external force (incident optical
 field)


  Consider the classical equation of motion that describes displacement (position X) of an electron with charge q and mass m attached to an atom (as
 if connected by a spring) with a dampening coefficient (loss) γ and resonant frequency ω0 in response to an applied field 


m
d
dt 2

X + mγ
d
dt
X + mω0

2X = −qEa

  Lets assume the atom can be described as a two level system with energy levels E1 and E2 such that the atomic resonance is ω0 = (E2-E1)/ℏ and the applied electric
 field is of the form E=E0eiωt. Then the eletron position (relative to rest) and induced dipole moment of the atom can be described as


X =
−qE0

m ω0
2 −ω 2 + iγω( )

eiω t

p = −qX =
−q2E0

m ω0
2 −ω 2 + iγω( )

eiω t+


-
Spring M
odel


m
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Classical Electron Model

  The dielectric constant can now be written in terms of the spring model


p = α pEa

α p =
q2

m ω0
2 −ω 2 + iγω( )

n2 = 1+ χ = 1+ Nα p
ε0
= 1+ Nq2

mε0 ω0
2 −ω 2 + iγω( )

  And we can now re-write the electric susceptibility in terms of the classical
 electron model and define the real and imaginary parts of χ as χ ´ and χ´´


χ = ′χ − i ′′χ =
Nq2

mε0 ω0
2 −ω 2 + iγω( )
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Near Resonance Condition


  Near resonance, ω ≈ ω0, the second term in χ is small compared to the first term
 and the index of refraction can be approximated by n=1+ χ/2


n ≈ 1+ χ
2
= 1+ Nq2

2mε0 ω0
2 −ω 2 + iγω( )

= 1+ Nq2

4ω0mε0 ω0 −ω + iγ / 2( )



ECE 228A Fall 2007Daniel J. Blumenthal
 3.14


Complex Refractive Index and Dispersion


  The real and imaginary parts of the electric susceptibility and index of
 refraction give rise to optical phase delay and optical absorption.


 

′χ − i ′′χ =
Nq2

mε0 ω0
2 −ω 2 + iγω( )

�
ω0
2 −ω 2 − iγω

ω0
2 −ω 2 − iγω

=
Nq2 ω0 −ω( )

2mω0ε0 ω0 −ω( )2 + γ / 2( )2





− i
Nq2 γ / 2( )

2mω0ε0 ω0 −ω( )2 + γ / 2( )2





′χ =
Nq2 ω0 −ω( )

2mω0ε0 ω0 −ω( )2 + γ / 2( )2





′′χ =
Nq2 γ / 2( )

2mω0ε0 ω0 −ω( )2 + γ / 2( )2





  We can separate the real and imaginary parts by multiplying numerator and
 denominator by the complex conjugate
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Complex Refractive Index and Dispersion


  The complex index is (not assuming near resonance)


′n = n − iκ = 1+
Nq2 ω0

2 −ω 2( )
2mε0 ω0

2 −ω 2( )2 + γ 2ω 2( )





− i
Nq2γω

2mε0 ω0
2 −ω 2( )2 + γ 2ω 2( )





  For a propagating field, we can write 


E = Aei(ω t− ′k z ) = Ae
i(ω t− 2π

λ
n− iκ( )z )

= Ae
i(ω t− 2π

λ
nz )
e
−
2π
λ
κ z

  Where we can now define the attenuation coefficient α


α =
1
I
dI
dz

I(z) = I(0)e−α z

α =
4π
λ
κ
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Dispersion and Complex Refractive Index


  Looking more closely at n from previous lecture (harmonic oscillator model), 


  Using the notation for n as n´ to denote a complex number, we see that as ω approaches ω0 and
 assuming χ<<1, the index of refraction increases. This change in refractive index as a function of
 optical frequency is called Chromatic Dispersion.


  Looking at the imaginary part of n´ we see that the optical E-field will be attenuated as ω approaches
 ω0 giving rise to Optical Absorption.


n ≈ 1+ χ
2
= 1+ Nq2

2mε0 ω0
2 −ω 2 + iγω( )

= 1+ Nq2

4ω0mε0 ω0 −ω + iγ / 2( )

′n = n − iκ = 1+
Nq2 ω0

2 −ω 2( )
2mε0 ω0

2 −ω 2( )2 + γ 2ω 2( )





− i
Nq2γω

2mε0 ω0
2 −ω 2( )2 + γ 2ω 2( )





Chromatic Dispersion
 Absorption
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Dispersion and Complex Refractive Index


  Plotting the real (n-1) and imaginary (κ) part of
 the complex refractive index as below, we see
 the classic relation between index and
 absorption (gain) for light interacation in
 atomic systems where are atoms are identical.


  We note the following characteristics:

  For the imaginary part of the refractive index (κ)

 the center of the absorption peak is located at ω0
 and falls off symmetrically as ω increase and
 decreases.


  κ(ω) has a Lorentzian lineshape

  The real part of the refractive index (n)

 approaches unity at low frequencies  (ω< ω0) and
 increases and peaks as ω approaches ω0. This
 region where dn/dω > 0 is called Normal
 Dispersion.


  As ω gets close to ω0 (very near resonance, where
 the absorption is  high), the index decreases and
 passes through 1 with increasing frequency. This
 region where dn/dω < 0 is called Anomalous
 Dispersion


  The relationship between the real (n-1) and
 imaginary (κ) part of the complex refractive
 index is dictated by the Kramers-Kronig
 relationship.


Normal
 Dispersion


Anomalous
 Dispersion


Absorption Peak
 (Resonance Frequency)


Lorentzian Lineshape
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Sellmeir Equation


  If we are dealing with a material that has a collection of different types of atoms, wach
 with its own resonance frequency (ωoj), damping factor (γj) and fractional per volume
 (Aj), then we can 

  Treat each one as having the absorption and index properties described by the harmonic

 oscillator model

  Linearly superimpose the absorption and index profiles for each atom for the whole material


n2 = 1+ Nq
2

mε0

Aj

ω j
2 −ω 2 + iγ 2ω( )j

∑
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Loss in early optical fibers

(now the O-H peaks around 1.4 µm are small)



